R/adipart.default.R

adipart.default <-
function(y, x, index=c("richness", "shannon", "simpson"),
    weights=c("unif", "prop"), relative = FALSE, nsimul=99, ...)
{
    ## evaluate formula
    lhs <- as.matrix(y)
    if (missing(x))
        x <- cbind(level_1=seq_len(nrow(lhs)), 
            leve_2=rep(1, nrow(lhs)))
    rhs <- data.frame(x)
    rhs[] <- lapply(rhs, as.factor)
    rhs[] <- lapply(rhs, droplevels)
    nlevs <- ncol(rhs)
    if (nlevs < 2)
        stop("provide at least two level hierarchy")
    if (any(rowSums(lhs) == 0))
        stop("data matrix contains empty rows")
    if (any(lhs < 0))
        stop("data matrix contains negative entries")
    if (is.null(colnames(rhs)))
        colnames(rhs) <- paste("level", 1:nlevs, sep="_")
    tlab <- colnames(rhs)

    ## check proper design of the model frame
    l1 <- sapply(rhs, function(z) length(unique(z)))
    if (!any(sapply(2:nlevs, function(z) l1[z] <= l1[z-1])))
        stop("number of levels are inappropriate, check sequence")
    rval <- list()
    rval[[1]] <- rhs[,nlevs]
    nCol <- nlevs - 1
    for (i in 2:nlevs) {
        rval[[i]] <- interaction(rhs[,nCol], rval[[(i-1)]], drop=TRUE)
        nCol <- nCol - 1
    }
    rval <- as.data.frame(rval[rev(seq_along(rval))])
    l2 <- sapply(rval, function(z) length(unique(z)))
    if (any(l1 != l2))
        stop("levels are not perfectly nested")

    ## aggregate response matrix
    fullgamma <-if (nlevels(rhs[,nlevs]) == 1)
        TRUE else FALSE
    ftmp <- vector("list", nlevs)
    for (i in seq_len(nlevs)) {
        ftmp[[i]] <- as.formula(paste("~", tlab[i], "- 1"))
    }

    ## is there a method/burnin/thin in ... ?
    method <- if (is.null(list(...)$method))
        "r2dtable" else list(...)$method
    burnin <- if (is.null(list(...)$burnin))
        0 else list(...)$burnin
    thin <- if (is.null(list(...)$thin))
        1 else list(...)$thin
    base <- if (is.null(list(...)$base))
        exp(1) else list(...)$base

    ## evaluate other arguments
    index <- match.arg(index)
    weights <- match.arg(weights)
    switch(index,
           "richness" = {
               divfun <- function(x) apply(x > 0, 1, sum)},
           "shannon" = {
               divfun <- function(x) diversity(x, index = "shannon", MARGIN = 1, base=base)},
           "simpson" = {
               divfun <- function(x) diversity(x, index = "simpson", MARGIN = 1)})

    ## this is the function passed to oecosimu
    wdivfun <- function(x) {
        ## matrix sum *can* change in oecosimu (but default is constant sumMatr)
        sumMatr <- sum(x)
        if (fullgamma) {
            tmp <- lapply(seq_len(nlevs-1), function(i) t(model.matrix(ftmp[[i]], rhs)) %*% x)
            tmp[[nlevs]] <- matrix(colSums(x), nrow = 1, ncol = ncol(x))
        } else {
            tmp <- lapply(seq_len(nlevs), function(i) t(model.matrix(ftmp[[i]], rhs)) %*% x)
        }
        ## weights will change in oecosimu thus need to be recalculated
        if (weights == "prop")
            wt <- lapply(seq_len(nlevs), function(i) apply(tmp[[i]], 1, function(z) sum(z) / sumMatr))
        else wt <- lapply(seq_len(nlevs), function(i) rep(1 / NROW(tmp[[i]]), NROW(tmp[[i]])))
        a <- sapply(seq_len(nlevs), function(i) sum(divfun(tmp[[i]]) * wt[[i]]))
        if (relative)
            a <- a / a[length(a)]
        b <- sapply(2:nlevs, function(i) a[i] - a[(i-1)])
        c(a, b)
    }
    if (nsimul > 0) {
        sim <- oecosimu(lhs, wdivfun, method = method, nsimul=nsimul,
                        burnin=burnin, thin=thin)
    } else {
        sim <- wdivfun(lhs)
        tmp <- rep(NA, length(sim))
        sim <- list(statistic = sim,
                    oecosimu = list(z = tmp, pval = tmp, method = NA, statistic = sim))
    }
    nam <- c(paste("alpha", seq_len(nlevs-1), sep="."), "gamma",
             paste("beta", seq_len(nlevs-1), sep="."))
    names(sim$statistic) <- attr(sim$oecosimu$statistic, "names") <- nam
    call <- match.call()
    call[[1]] <- as.name("adipart")
    attr(sim, "call") <- call
    attr(sim$oecosimu$simulated, "index") <- index
    attr(sim$oecosimu$simulated, "weights") <- weights
    attr(sim, "n.levels") <- nlevs
    attr(sim, "terms") <- tlab
    attr(sim, "model") <- rhs
    class(sim) <- c("adipart", class(sim))
    sim
}

Try the vegan package in your browser

Any scripts or data that you put into this service are public.

vegan documentation built on May 2, 2019, 5:51 p.m.