Description Usage Arguments Value Author(s) Examples
View source: R/plotDiffHeatmap.R
Heatmaps summarizing differental abundance & differential state testing results.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | plotDiffHeatmap(
  x,
  y,
  k = NULL,
  top_n = 20,
  fdr = 0.05,
  lfc = 1,
  all = FALSE,
  sort_by = c("padj", "lfc", "none"),
  y_cols = list(padj = "p_adj", lfc = "logFC", target = "marker_id"),
  assay = "exprs",
  fun = c("median", "mean", "sum"),
  normalize = TRUE,
  col_anno = TRUE,
  row_anno = TRUE,
  hm_pal = NULL,
  fdr_pal = c("lightgrey", "lightgreen"),
  lfc_pal = c("blue3", "white", "red3")
)
 | 
| x | a  | 
| y | a  | 
| k | character string specifying 
the clustering in  | 
| top_n | numeric. Number of top clusters (if  | 
| fdr | numeric threshold on adjusted p-values below which results should be retained and considered to be significant. | 
| lfc | numeric threshold on logFCs above which to retain results. | 
| all | logical specifying whether all  | 
| sort_by | character string specifying the  | 
| y_cols | named list specifying columns in  | 
| assay | character string specifying which assay 
data to use; valid values are  | 
| fun | character string specifying the function to use 
as summary statistic for aggregation of  | 
| normalize | logical specifying whether Z-score normalized values 
should be plotted. If  | 
| col_anno | logical specifying whether to include column annotations 
for all non-numeric cell metadata variables; or a character vector 
in  | 
| row_anno | logical specifying whether to include a row annotation indicating whether cluster (DA) or cluster-marker combinations (DS) are significant, labeled with adjusted p-values, as well as logFCs. | 
| hm_pal | character vector of colors 
to interpolate for the heatmap. Defaults to  | 
| fdr_pal, lfc_pal | character vector of colors to use for row annotations 
 | 
a Heatmap-class object.
Lukas M Weber & Helena L Crowell helena.crowell@uzh.ch
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | # construct SCE & run clustering
data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce)
## differential analysis
library(diffcyt)
# create design & constrast matrix
design <- createDesignMatrix(PBMC_md, cols_design=3:4)
contrast <- createContrast(c(0, 1, 0, 0, 0))
# test for
# - differential abundance (DA) of clusters
# - differential states (DS) within clusters
da <- diffcyt(sce, design = design, contrast = contrast, 
    analysis_type = "DA", method_DA = "diffcyt-DA-edgeR",
    clustering_to_use = "meta20")
    
ds <- diffcyt(sce, design = design, contrast = contrast, 
    analysis_type = "DS", method_DS = "diffcyt-DS-limma",
    clustering_to_use = "meta20")
    
# extract result tables
da <- rowData(da$res)
ds <- rowData(ds$res)
    
# display test results for
# - top DA clusters
# - top DS cluster-marker combinations
plotDiffHeatmap(sce, da)
plotDiffHeatmap(sce, ds)
# visualize results for subset of clusters
sub <- filterSCE(sce, cluster_id %in% seq_len(5), k = "meta20")
plotDiffHeatmap(sub, da, all = TRUE, sort_by = "none")
# visualize results for selected feature
# & include only selected annotation
plotDiffHeatmap(sce["pp38", ], ds, col_anno = "condition", all = TRUE)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.