Nothing
ttestCtData <-
function(q,
groups = NULL,
calibrator,
alternative = "two.sided",
paired = FALSE,
replicates = TRUE,
sort = TRUE,
stringent = TRUE,
p.adjust = "BH",
...)
{
# Get the relevant data
data <- exprs(q)
# Collapse replicated genes if required
if (replicates) {
split.by <- rownames(data)
} else {
split.by <- featurePos(q)
}
data2 <- split(as.data.frame(data), split.by)
feats <- split(featureNames(q), split.by)
featPos <- split(featurePos(q), split.by)
# Various checks
if (length(groups) != ncol(data))
stop("Dimensions of data and groups doesn't match\n")
groups <- factor(groups, levels=unique(groups))
if (length(levels(groups)) != 2)
stop("Two factor levels required for \'groups\'\n")
# Assign calibrator and target samples
if (missing(calibrator))
calibrator <- groups[1]
g1 <- groups==calibrator
g2 <- groups!=calibrator
# Perform the t-test.
t.tests <- lapply(data2, function(x) {
x <- as.matrix(x)
if (all(x==x[1,1])) {
# Have to remove samples where all values are identical!
list(p.value=1, statistic=NA, estimate=c(x[1,1], x[1,1]))
} else {
res <- t.test(x[,g1], x[,g2], alternative=alternative, paired=paired, ...)
# Calculate mean for each group (not available if paired=TRUE)
res[["estimate"]] <- c(mean(x[,g1]), mean(x[,g2]))
res
}})
# Collect output
means <- t(sapply(t.tests, "[[", "estimate"))
colnames(means) <- c("meanCalibrator", "meanTarget")
p.value <- sapply(t.tests, "[[", "p.value")
t.value <- sapply(t.tests, "[[", "statistic")
genes <- sapply(feats, "[[", 1)
featurePos <- sapply(featPos, paste, collapse=";")
# Make adjusted p-value
adj.p.value <- p.adjust(p.value, method=p.adjust)
# Fold change is calculated as ddCt, as well as 2^(-ddCT)
cal <- grep(calibrator, colnames(means))
FC <- means[, "meanTarget"] - means[, "meanCalibrator"]
FC2 <- 2^(-FC)
out <- data.frame(genes, featurePos, t.value, p.value, adj.p.value, FC, FC2, means, row.names=1:length(genes))
# Indicate reliability of measure
for (l in unique(groups)) {
new.cat <- rep("OK", length(data2))
old.cat <- split(featureCategory(q[,groups==l]), split.by)
count.cat <- sapply(old.cat, function(x) sum(unlist(x) %in% c("Undetermined", "Unreliable")))
cutoff <- ifelse(stringent, 1, ceiling(sum(groups==l)/2))
new.cat[count.cat>=cutoff] <- "Undetermined"
out[, paste("category", ifelse(l==calibrator, "Calibrator", "Target"), sep="")] <- new.cat
}
# Return output, sorted by p-value if requested
names(out) <- c("genes", "feature.pos", "t.test", "p.value", "adj.p.value", "ddCt", "FC", colnames(means), grep("category", colnames(out), value=TRUE))
if (sort)
out <- out[order(out$p.value),]
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.