Nothing
#' @title Gibbs sampling algorithm for Melissa model
#'
#' @description \code{melissa_gibbs} implements the Gibbs sampling algorithm
#' for performing clustering of single cells based on their DNA methylation
#' profiles, where the observation model is the Bernoulli distributed Probit
#' Regression likelihood. NOTE: that Gibbs sampling is really slow and we
#' recommend using the VB implementation: \code{\link{melissa}}.
#'
#' @param X A list of length I, where I are the total number of cells. Each
#' element of the list contains another list of length N, where N is the total
#' number of genomic regions. Each element of the inner list is an L x 2
#' matrix of observations, where 1st column contains the locations and the 2nd
#' column contains the methylation level of the corresponding CpGs.
#' @param K Integer denoting the number of clusters K.
#' @param pi_k Vector of length K, denoting the mixing proportions.
#' @param w A N x M x K array, where each column contains the basis function
#' coefficients for the corresponding cluster.
#' @param basis A 'basis' object. E.g. see create_rbf_object from BPRMeth
#' package
#' @param w_0_mean The prior mean hyperparameter for w
#' @param w_0_cov The prior covariance hyperparameter for w
#' @param dir_a The Dirichlet concentration parameter, prior over pi_k
#' @param lambda The complexity penalty coefficient for penalized regression.
#' @param gibbs_nsim Argument giving the number of simulations of the Gibbs
#' sampler.
#' @param gibbs_burn_in Argument giving the burn in period of the Gibbs sampler.
#' @param inner_gibbs Logical, indicating if we should perform Gibbs sampling to
#' sample from the augmented BPR model.
#' @param gibbs_inner_nsim Number of inner Gibbs simulations.
#' @param is_parallel Logical, indicating if code should be run in parallel.
#' @param no_cores Number of cores to be used, default is max_no_cores - 1.
#' @param is_verbose Logical, print results during EM iterations
#'
#' @return An object of class \code{melissa_gibbs}.
#'
#' @importFrom stats rmultinom rnorm
#' @importFrom MCMCpack rdirichlet
#' @importFrom truncnorm rtruncnorm
#' @importFrom mvtnorm rmvnorm
#' @importFrom utils txtProgressBar setTxtProgressBar
#'
#' @author C.A.Kapourani \email{C.A.Kapourani@@ed.ac.uk}
#'
#' @examples
#' # Example of running Melissa Gibbs on synthetic data
#'
#' # Create RBF basis object with 4 RBFs
#' basis_obj <- BPRMeth::create_rbf_object(M = 4)
#'
#' set.seed(15)
#' # Run Melissa Gibbs
#' melissa_obj <- melissa_gibbs(X = melissa_synth_dt$met, K = 2, basis = basis_obj,
#' gibbs_nsim = 10, gibbs_burn_in = 5, is_parallel = FALSE, is_verbose = FALSE)
#'
#' # Extract mixing proportions
#' print(melissa_obj$pi_k)
#'
#' @seealso \code{\link{melissa}}, \code{\link{create_melissa_data_obj}},
#' \code{\link{partition_dataset}}, \code{\link{filter_regions}}
#'
#' @export
melissa_gibbs <- function(X, K = 2, pi_k = rep(1/K, K), w = NULL, basis = NULL,
w_0_mean = NULL, w_0_cov = NULL, dir_a = rep(1, K),
lambda = 1/2, gibbs_nsim = 1000, gibbs_burn_in = 200,
inner_gibbs = FALSE, gibbs_inner_nsim = 50,
is_parallel = TRUE, no_cores = NULL,
is_verbose = FALSE){
# Check that X is a list object
assertthat::assert_that(is.list(X))
assertthat::assert_that(is.list(X[[1]]))
I <- length(X) # Extract number of cells
N <- length(X[[1]]) # Extract number of promoter regions
# Number of parallel cores
no_cores <- .parallel_cores(no_cores = no_cores,
is_parallel = is_parallel,
max_cores = N)
# Create RBF basis object by default
if (is.null(basis)) {
warning("Basis object not defined. Using as default M = 3 RBFs.\n")
basis <- BPRMeth::create_rbf_object(M = 3)
}
# Remove rownames
for (n in 1:length(X)) {
X[[n]] <- lapply(X = X[[n]], function(x) {rownames(x) <- NULL; return(x)})
}
M <- basis$M + 1 # Number of coefficient parameters
# Initialize priors over the parameters
if (is.null(w_0_mean)) {
w_0_mean <- rep(0, M)
}
if (is.null(w_0_cov)) {
w_0_cov <- diag(4, M)
}
# Invert covariance matrix to get the precision matrix
prec_0 <- solve(w_0_cov)
# Compute product of prior mean and prior precision matrix
w_0_prec_0 <- prec_0 %*% w_0_mean
# Matrices / Lists for storing results
w_pdf <- matrix(0, nrow = I, ncol = K) # Store weighted PDFs
post_prob <- matrix(0, nrow = I, ncol = K) # Hold responsibilities
C <- matrix(0, nrow = I, ncol = K) # Mixture components
C_prev <- C # Keep previous components
C_matrix <- matrix(0, nrow = I, ncol = K) # Total mixture components
NLL <- vector(mode = "numeric", length = gibbs_nsim)
NLL[1] <- 1e+100
H = y = z = V <- lapply(seq_len(K), function(k) { vector("list", N) } )
len_y <- matrix(0, nrow = K, ncol = N) # Total CpG observations per region
sum_y <- matrix(0, nrow = K, ncol = N) # Total methylated CpGs per region
# Store mixing proportions draws
pi_draws <- matrix(NA_real_, nrow = gibbs_nsim, ncol = K)
# Store BPR coefficient draws
w_draws <- array(data = 0, dim = c(gibbs_nsim - gibbs_burn_in, N, M , K))
# List of genes with no coverage for each cell
region_ind <- lapply(X = seq_len(I), FUN = function(n) which(!is.na(X[[n]])))
# Pre-compute the design matrices H for efficiency: each entry is a cell
if (is_parallel) { des_mat <- parallel::mclapply(X = seq_len(I), FUN = function(n)
init_design_matrix(basis = basis, X = X[[n]], coverage_ind = region_ind[[n]]),
mc.cores = no_cores)
}else {des_mat <- lapply(X = seq_len(I), FUN = function(n)
init_design_matrix(basis = basis, X = X[[n]], coverage_ind = region_ind[[n]]))
}
# TODO: Initialize w in a sensible way via mini EM
if (is.null(w)) {
# Perform checks for initial parameter values
out <- .do_scEM_checks(X = X, H = des_mat, reg_ind = region_ind, K = K,
pi_k = NULL, w = w, basis = basis, lambda = lambda,
em_init_nstart = 2, em_init_max_iter = 10,
opt_itnmax = 15, init_opt_itnmax = 10,
is_parallel = is_parallel, no_cores = no_cores,
is_verbose = FALSE)
w <- out$w; pi_k <- out$pi_k
}
pi_draws[1, ] <- pi_k
if (is_verbose) {
message("Starting Gibbs sampling...")
}
# Show progress bar
pb <- txtProgressBar(min = 1, max = gibbs_nsim, style = 3)
##---------------------------------
# Start Gibbs sampling
##---------------------------------
for (t in 2:gibbs_nsim) {
empty_C <- vector("integer", K)
## ---------------------------------------------------------------
# Compute weighted pdfs for each cluster
for (k in seq_len(K)) {
# Apply to each cell and only to regions with CpG coverage
w_pdf[, k] <- log(pi_k[k]) + vapply(X = seq_len(I), FUN = function(i)
sum(vapply(X = region_ind[[i]], FUN = function(y)
BPRMeth::bpr_log_likelihood(w = w[y, , k], X = X[[i]][[y]],
H = des_mat[[i]][[y]], lambda = lambda,
is_nll = FALSE),
FUN.VALUE = numeric(1), USE.NAMES = FALSE)),
FUN.VALUE = numeric(1), USE.NAMES = FALSE)
}
# Use the logSumExp trick for numerical stability
Z <- apply(w_pdf, 1, log_sum_exp)
# Get actual posterior probabilities, i.e. responsibilities
post_prob <- exp(w_pdf - Z)
NLL[t] <- -sum(Z) # Evaluate NLL
## -------------------------------------------------------------------
# Draw mixture components for ith simulation
# Sample one point from a Multinomial i.e. ~ Discrete
for (i in seq_len(I)) {
C[i, ] <- rmultinom(n = 1, size = 1, post_prob[i, ])
}
# ## -------------------------------------------------------------------
# TODO: Should we keep all data
if (t > gibbs_burn_in) {
C_matrix <- C_matrix + C
}
## -------------------------------------------------------------------
# Update mixing proportions using updated cluster component counts
Ci_k <- colSums(C)
if (is_verbose) {message("\r", Ci_k) }
pi_k <- as.vector(MCMCpack::rdirichlet(n = 1, alpha = dir_a + Ci_k))
pi_draws[t, ] <- pi_k
# Matrix to keep promoters with no CpG coverage
empty_region <- matrix(0, nrow = N, ncol = K)
for (k in seq_len(K)) {
# Which cells are assigned to cluster k
C_idx <- which(C[, k] == 1)
# TODO: Handle cases when we have empty clusters...
if (length(C_idx) == 0) {
if (is_verbose) { message("Warning: Empty cluster...") }
empty_C[k] <- 1
next
}
# Check if current clusters ids are not equal to previous ones
if (!identical(C[, k], C_prev[, k])) {
if (is_verbose) {
message(t, ": Not identical in cluster ", k)
}
# Iterate over each promoter region
for (n in seq_len(N)) {
# Initialize empty vector for observed methylation data
yy <- vector(mode = "integer")
# Concatenate the nth promoter from all cells in cluster k
tmp <- lapply(des_mat, "[[", n)[C_idx]
# TODO: Is this NULL or NA???
tmp <- do.call(rbind, tmp[!is.na(tmp)])
# TODO: Check when we have empty promoters....
if (is.null(tmp)) {
H[[k]][[n]] <- NA
empty_region[n, k] <- 1
}else{
H[[k]][[n]] <- tmp
# Obtain the corresponding methylation levels
for (cell in C_idx) {
obs <- X[[cell]][[n]]
if (length(obs) > 1) {
yy <- c(yy, obs[, 2])
}
}
# Precompute for faster computations
len_y[k, n] <- length(yy)
sum_y[k, n] <- sum(yy)
y[[k]][[n]] <- yy
z[[k]][[n]] <- rep(NA_real_, len_y[k, n])
# Compute posterior variance of w_nk
V[[k]][[n]] <- solve(prec_0 + crossprod(H[[k]][[n]], H[[k]][[n]]))
}
}
}
for (n in seq_len(N)) {
# In case we have no CpG data in this promoter
if (is.vector(H[[k]][[n]])) { next }
# Perform Gibbs sampling on the augmented BPR model
if (inner_gibbs & t > 4) {
w_inner <- matrix(0, nrow = gibbs_inner_nsim, ncol = M)
w_inner[1, ] <- w[n, , k]
for (tt in 2:gibbs_inner_nsim) {
# Update Mean of z
mu_z <- H[[k]][[n]] %*% w_inner[tt - 1, ]
# Draw latent variable z from z | w, y, X
if (sum_y[k, n] == 0) {
z[[k]][[n]] <- rtruncnorm(len_y[k, n], mean = mu_z, sd = 1,
a = -Inf, b = 0)
}else if (sum_y[k, n] == len_y[k, n]) {
z[[k]][[n]] <- rtruncnorm(len_y[k, n], mean = mu_z, sd = 1,
a = 0, b = Inf)
}else{
z[[k]][[n]][y[[k]][[n]] == 1] <- rtruncnorm(sum_y[k, n],
mean = mu_z[y[[k]][[n]] == 1], sd = 1, a = 0, b = Inf)
z[[k]][[n]][y[[k]][[n]] == 0] <- rtruncnorm(len_y[k, n] - sum_y[k, n],
mean = mu_z[y[[k]][[n]] == 0], sd = 1, a = -Inf, b = 0)
}
# Compute posterior mean of w
Mu <- V[[k]][[n]] %*% (w_0_prec_0 + crossprod(H[[k]][[n]], z[[k]][[n]]))
# Draw variable \w from its full conditional: \w | z, X
if (M == 1) {
w_inner[tt, ] <- c(rnorm(n = 1, mean = Mu, sd = V[[k]][[n]]))
}else {
w_inner[tt, ] <- c(rmvnorm(n = 1, mean = Mu, sigma = V[[k]][[n]]))
}
}
if (M == 1) {
w[n, , k] <- mean(w_inner[-(seq_len(gibbs_inner_nsim/2)), ])
}else {
w[n, , k] <- colMeans(w_inner[-(seq_len(gibbs_inner_nsim/2)), ])
}
}else{
##-------------=============-=-=-=
# TODO:: Should we run this twice to update the z parameter!!!
for (l in seq_len(3)) {
# Update Mean of z
mu_z <- H[[k]][[n]] %*% w[n, , k]
# Draw latent variable z from its full conditional: z | w, y, X
if (sum_y[k, n] == 0) {
z[[k]][[n]] <- rtruncnorm(len_y[k, n], mean = mu_z, sd = 1,
a = -Inf, b = 0)
}else if (sum_y[k, n] == len_y[k, n]) {
z[[k]][[n]] <- rtruncnorm(len_y[k, n], mean = mu_z, sd = 1,
a = 0, b = Inf)
}else{
z[[k]][[n]][y[[k]][[n]] == 1] <- rtruncnorm(sum_y[k, n],
mean = mu_z[y[[k]][[n]] == 1], sd = 1, a = 0, b = Inf)
z[[k]][[n]][y[[k]][[n]] == 0] <- rtruncnorm(len_y[k, n] - sum_y[k, n],
mean = mu_z[y[[k]][[n]] == 0], sd = 1, a = -Inf, b = 0)
}
# Compute posterior mean of w
Mu <- V[[k]][[n]] %*% (w_0_prec_0 + crossprod(H[[k]][[n]], z[[k]][[n]]))
# Draw variable \w from its full conditional: \w | z, X
if (M == 1) {
w[n, , k] <- c(rnorm(n = 1, mean = Mu, sd = V[[k]][[n]]))
}else{
w[n, , k] <- c(rmvnorm(n = 1, mean = Mu, sigma = V[[k]][[n]]))
}
}
}
}
}
# For each empty promoter region, take the methyation profile of the
# promoter regions that belong to another cluster
for (n in seq_len(N)) {
clust_empty_ind <- which(empty_region[n, ] == 1)
# No empty promoter regions
if (length(clust_empty_ind) == 0) {
next
}
# Case that should never happen with the right preprocessing step
else if (length(clust_empty_ind) == K) {
for (k in seq_len(K)) {
w[n, , k] <- c(rmvnorm(1, w_0_mean, w_0_cov))
}
}else{
# TODO: Perform a better imputation approach...
cover_ind <- which(empty_region[n, ] == 0)
# Randomly choose a cluster to obtain the methylation profiles
k_imp <- sample(length(cover_ind), 1)
for (k in seq_along(clust_empty_ind)) {
w[n, , clust_empty_ind[k]] <- w[n, , k_imp]
}
}
}
# Handle empty clusters
dom_C <- which.max(Ci_k)
for (k in seq_len(K)) {
if (empty_C[k] == 1) {
w[, , k] <- w[, , dom_C]
}
}
C_prev <- C # Make current cluster indices same as previous
if (t > gibbs_burn_in) {
w_draws[t - gibbs_burn_in, , ,] <- w
}
setTxtProgressBar(pb,t)
}
close(pb)
if (is_verbose) { message("Finished Gibbs sampling...") }
##-----------------------------------------------
if (is_verbose) { message("Computing summary statistics...") }
# Compute summary statistics from Gibbs simulation
if (K == 1) {
pi_post <- mean(pi_draws[gibbs_burn_in:gibbs_nsim, ])
}else {
pi_post <- colMeans(pi_draws[gibbs_burn_in:gibbs_nsim, ])
}
C_post <- C_matrix / (gibbs_nsim - gibbs_burn_in)
w_post <- array(0, dim = c(N, M, K))
for (k in seq_len(K)) {
w_post[, , k] <- colSums(w_draws[, , , k]) / (gibbs_nsim - gibbs_burn_in)
}
# Object to keep input data
dat <- list(K = K, N = N, I = I, M = M, basis = basis, dir_a = dir_a,
lambda = lambda, w_0_mean = w_0_mean, w_0_cov = w_0_cov,
gibbs_nsim = gibbs_nsim, gibbs_burn_in = gibbs_burn_in)
# Object to hold all the Gibbs draws
draws <- list(pi = pi_draws, w = w_draws, C = C_matrix, NLL = NLL)
# Object to hold the summaries for the parameters
summary <- list(pi = pi_post, w = w_post, C = C_post)
# Create sc_bayes_bpr_fdmm object
obj <- structure(list(summary = summary, draws = draws, dat = dat,
r_nk = C_post, W = w_post, pi_k = pi_post,
basis = basis),
class = "melissa_gibbs")
return(obj)
}
# Internal function to make all the appropriate type checks.
.do_scEM_checks <- function(X, H, reg_ind, K, pi_k = NULL, w = NULL, basis,
lambda = 1/6, use_kmeans = TRUE, em_init_nstart = 5,
em_init_max_iter = 10, epsilon_conv = 1e-04,
opt_method = "CG", opt_itnmax = 30,
init_opt_itnmax = 20, is_parallel = TRUE,
no_cores = NULL, is_verbose = TRUE){
I <- length(X)
N <- length(X[[1]])
M <- basis$M + 1
if (is.null(w)) {
ww <- array(data = rnorm(N*M*I, 0, 0.01), dim = c(N, M, I))
w_init <- rep(0.5, M)
for (i in seq_len(I)) {
# Compute regression coefficients using MLE
ww[reg_ind[[i]], ,i] <- BPRMeth::infer_profiles_mle(X = X[[i]][reg_ind[[i]]],
model = "bernoulli", basis = basis, H = H[[i]][reg_ind[[i]]], w = w_init,
lambda = lambda, opt_method = opt_method, opt_itnmax = init_opt_itnmax,
is_parallel = FALSE, no_cores = no_cores)$W
}
# Transform to long format to perform k-means
W_opt <- matrix(0, nrow = I, ncol = N * M)
for (i in seq_len(I)) {
W_opt[i, ] <- as.vector(ww[,,i])
}
w <- array(data = 0, dim = c(N, M, K))
NLL_prev <- 1e+120
optimal_w = optimal_pi_k <- NULL
# Run 'mini' EM algorithm to find optimal starting points
if (is_parallel) {
em_res <- parallel::mclapply(X = seq_len(em_init_nstart), FUN = function(t){
if (use_kmeans) {
# Use Kmeans with random starts
cl <- stats::kmeans(W_opt, K, nstart = 1)
# Get the mixture components
C_n <- cl$cluster
# TODO: Check that k-means does not return empty clusters..
# Sample randomly one point from each cluster as initial centre
for (k in seq_len(K)) {
w[, ,k] <- ww[, , sample(which(C_n == k), 1)]
}
# Mixing proportions
if (is.null(pi_k)) {
pi_k <- as.vector(table(C_n) / I )
}
}else{
w <- array(data = ww[, ,sample(I, K)], dim = c(N, M, K))
if (is.null(pi_k)) {
pi_k <- rep(1/K, K)
}
}
# Run mini EM
em <- .bprmeth_EM(X = X, H = H, reg_ind = reg_ind, K = K, pi_k = pi_k,
w = w, basis = basis, lambda = lambda,
em_max_iter = em_init_max_iter,
epsilon_conv = epsilon_conv, opt_method = opt_method,
opt_itnmax = opt_itnmax, is_verbose = is_verbose)
return(em)
}, mc.cores = no_cores)
}else{
em_res <- lapply(X = seq_len(em_init_nstart), FUN = function(t){
if (use_kmeans) {
# Use Kmeans with random starts
cl <- stats::kmeans(W_opt, K, nstart = 1)
# Get the mixture components
C_n <- cl$cluster
# TODO: Check that k-means does not return empty clusters..
# Sample randomly one point from each cluster as initial centre
for (k in seq_len(K)) {
w[, ,k] <- ww[, , sample(which(C_n == k), 1)]
}
# Mixing proportions
if (is.null(pi_k)) {
pi_k <- as.vector(table(C_n) / I )
}
}else{
w <- array(data = ww[, ,sample(I, K)], dim = c(N, M, K))
if (is.null(pi_k)) {
pi_k <- rep(1/K, K)
}
}
# Run mini EM
em <- .bprmeth_EM(X = X, H = H, reg_ind = reg_ind, K = K, pi_k = pi_k,
w = w, basis = basis, lambda = lambda,
em_max_iter = em_init_max_iter,
epsilon_conv = epsilon_conv, opt_method = opt_method,
opt_itnmax = opt_itnmax, is_verbose = is_verbose)
return(em)
} )
}
for (t in seq_len(em_init_nstart)) {
# Check if NLL is lower and keep the optimal params
NLL_cur <- utils::tail(em_res[[t]]$NLL, n = 1)
if (NLL_cur < NLL_prev) {
# TODO:: Store optimal pi_k from EM
optimal_w <- em_res[[t]]$w
optimal_pi_k <- em_res[[t]]$pi_k
NLL_prev <- NLL_cur
}
}
}
if (is.null(pi_k)) {
optimal_pi_k <- rep(1 / K, K)
}
if (length(w[1,,1]) != (basis$M + 1) ) {
stop("Coefficient vector should be M+1, M: number of basis functions!")
}
return(list(w = optimal_w, basis = basis, pi_k = optimal_pi_k))
}
##---------------------------------------
#
# EM algorithm
#
.bprmeth_EM <- function(X, H, reg_ind, K = 2, pi_k, w, basis, lambda = 1/6,
em_max_iter = 100, epsilon_conv = 1e-05,
opt_method = "CG", opt_itnmax = 50, is_verbose = FALSE){
#
# Optimize a promoter regions across cells, which are weighted by the
# responsibilities of belonging to each cluster.
#
optim_regions <- function(X, H, w, K, opt_method = opt_method, opt_itnmax,
post_prob, lambda){
covered_ind <- which(!is.na(H))
if (is.vector(w)) { w <- matrix(w, ncol = K) }
for (k in seq_len(K)) { # For each cluster k
# TODO: How to handle empty regions???
w[, k] <- stats::optim(par = w[, k], fn = BPRMeth::sum_weighted_bpr_lik,
gr = BPRMeth::sum_weighted_bpr_grad,
method = opt_method, control = list(maxit = opt_itnmax),
X_list = X[covered_ind], H_list = H[covered_ind],
r_nk = post_prob[covered_ind, k], lambda = lambda,
is_nll = TRUE)$par
}
return(w)
}
I <- length(X) # Number of cells
N <- length(X[[1]]) # Number of regions
M <- basis$M + 1 # Number of basis functions
NLL <- 1e+100 # Initialize and store NLL for each EM iteration
n <- 0
# Matrices / Lists for storing results
w_pdf <- matrix(0, nrow = I, ncol = K) # Store weighted PDFs
post_prob <- matrix(0, nrow = I, ncol = K) # Hold responsibilities
w_tmp <- array(data = 0, dim = c(N, M, K))
# Run EM algorithm until convergence
for (t in seq_len(em_max_iter)) {
# TODO: Handle empty clusters!!!
# TODO: Handle empty clusters!!!
## ---------------------------------------------------------------
# Compute weighted pdfs for each cluster
for (k in seq_len(K)) {
# Apply to each cell and only to regions with CpG coverage
w_pdf[, k] <- log(pi_k[k]) + vapply(X = seq_len(I), FUN = function(i)
sum(vapply(X = reg_ind[[i]], FUN = function(y)
BPRMeth::bpr_log_likelihood(w = w[y, , k], X = X[[i]][[y]],
H = H[[i]][[y]], lambda = lambda,
is_nll = FALSE),
FUN.VALUE = numeric(1), USE.NAMES = FALSE)),
FUN.VALUE = numeric(1), USE.NAMES = FALSE)
}
# Use the logSumExp trick for numerical stability
Z <- apply(w_pdf, 1, log_sum_exp)
# Get actual posterior probabilities, i.e. responsibilities
post_prob <- exp(w_pdf - Z)
NLL <- c(NLL, (-1) * sum(Z)) # Evaluate NLL
# M-Step -----------------------------------------------
#
# Compute sum of posterior probabilities for each cluster
I_k <- colSums(post_prob)
# Update mixing proportions for each cluster
pi_k <- I_k / I
# Update basis function coefficient matrix w
res_out <- lapply(seq_len(N), function(n)
optim_regions(X = lapply(X, "[[", n), H = lapply(H, "[[", n), w = w[n, , ],
K = K, opt_method = opt_method, opt_itnmax = opt_itnmax,
post_prob = post_prob, lambda = lambda))
for (k in seq_len(K)) {
tmp <- sapply(res_out, function(x) x[, k])
if (is.matrix(tmp)) {
w_tmp[, , k] <- t(tmp)
}
else {
w_tmp[, 1, k] <- tmp
}
}
w <- w_tmp
if (is_verbose) {
message("\r", "It: ", t, " NLL:\t", NLL[t + 1],
"\tDiff:\t", NLL[t] - NLL[t + 1])
}
if (NLL[t + 1] > NLL[t]) {
message("NLL increases!\n"); break;
}
# Check for convergence
if (NLL[t] - NLL[t + 1] < epsilon_conv) {
break
}
}
# Check if EM converged in the given maximum iterations
if (t == em_max_iter) {
warning("EM did not converge!\n")
}
obj <- structure(list(K = K, N = N, w = w, pi_k = pi_k, lambda = lambda,
em_max_iter = em_max_iter, opt_method = opt_method,
opt_itnmax = opt_itnmax, NLL = NLL,
basis = basis, post_prob = post_prob),
class = "scbpr_EM")
return(obj)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.