R/melissa_vb.R

Defines functions melissa_inner .update_Ez melissa

Documented in melissa

#' @name melissa
#' @rdname melissa_vb
#' @aliases melissa_cluster, melissa_impute, melissa_vb
#'
#' @title Cluster and impute single cell methylomes using VB
#'
#' @description \code{melissa} clusters and imputes single cells based on their
#'   methylome landscape on specific genomic regions, e.g. promoters, using the
#'   Variational Bayes (VB) EM-like algorithm.
#'
#' @param X The input data, which has to be a \link[base]{list} of elements of
#'   length N, where N are the total number of cells. Each element in the list
#'   contains another list of length M, where M is the total number of genomic
#'   regions, e.g. promoters. Each element in the inner list is an \code{I X 2}
#'   matrix, where I are the total number of observations. The first column
#'   contains the input observations x (i.e. CpG locations) and the 2nd columns
#'   contains the corresponding methylation level.
#' @param K Integer denoting the total number of clusters K.
#' @param basis A 'basis' object. E.g. see create_basis function from BPRMeth
#'   package. If NULL, will an RBF object with 3 basis functions will be
#'   created.
#' @param delta_0 Parameter vector of the Dirichlet prior on the mixing
#'   proportions pi.
#' @param w Optional, an Mx(D)xK array of the initial parameters, where first
#'   dimension are the genomic regions M, 2nd the number of covariates D (i.e.
#'   basis functions), and 3rd are the clusters K. If NULL, will be assigned
#'   with default values.
#' @param alpha_0 Hyperparameter: shape parameter for Gamma distribution. A
#'   Gamma distribution is used as prior for the precision parameter tau.
#' @param beta_0 Hyperparameter: rate parameter for Gamma distribution. A Gamma
#'   distribution is used as prior for the precision parameter tau.
#' @param vb_max_iter Integer denoting the maximum number of VB iterations.
#' @param epsilon_conv Numeric denoting the convergence threshold for VB.
#' @param is_kmeans Logical, use Kmeans for initialization of model parameters.
#' @param vb_init_nstart Number of VB random starts for finding better
#'   initialization.
#' @param vb_init_max_iter Maximum number of mini-VB iterations.
#' @param is_parallel Logical, indicating if code should be run in parallel.
#' @param no_cores Number of cores to be used, default is max_no_cores - 1.
#' @param is_verbose Logical, print results during VB iterations.
#'
#' @return An object of class \code{melissa} with the following elements:
#'   \itemize{ \item{ \code{W}: An (M+1) X K matrix with the optimized parameter
#'   values for each cluster, M are the number of basis functions. Each column
#'   of the matrix corresponds a different cluster k.} \item{ \code{W_Sigma}: A
#'   list with the covariance matrices of the posterior parmateter W for each
#'   cluster k.} \item{ \code{r_nk}: An (N X K) responsibility matrix of each
#'   observations being explained by a specific cluster. } \item{ \code{delta}:
#'   Optimized Dirichlet paramter for the mixing proportions. } \item{
#'   \code{alpha}: Optimized shape parameter of Gamma distribution. } \item{
#'   \code{beta}: Optimized rate paramter of the Gamma distribution } \item{
#'   \code{basis}: The basis object. } \item{\code{lb}: The lower bound vector.}
#'   \item{\code{labels}: Cluster assignment labels.} \item{ \code{pi_k}:
#'   Expected value of mixing proportions.} }
#'
#' @section Details: The modelling and mathematical details for clustering
#'   profiles using mean-field variational inference are explained here:
#'   \url{http://rpubs.com/cakapourani/} . More specifically: \itemize{\item{For
#'   Binomial/Bernoulli observation model check:
#'   \url{http://rpubs.com/cakapourani/vb-mixture-bpr}} \item{For Gaussian
#'   observation model check: \url{http://rpubs.com/cakapourani/vb-mixture-lr}}}
#'
#' @author C.A.Kapourani \email{C.A.Kapourani@@ed.ac.uk}
#'
#' @examples
#' # Example of running Melissa on synthetic data
#'
#' # Create RBF basis object with 4 RBFs
#' basis_obj <- BPRMeth::create_rbf_object(M = 4)
#'
#' set.seed(15)
#' # Run Melissa
#' melissa_obj <- melissa(X = melissa_synth_dt$met, K = 2, basis = basis_obj,
#'    vb_max_iter = 10, vb_init_nstart = 1, vb_init_max_iter = 5,
#'    is_parallel = FALSE, is_verbose = FALSE)
#'
#' # Extract mixing proportions
#' print(melissa_obj$pi_k)
#'
#' @seealso \code{\link{create_melissa_data_obj}},
#'   \code{\link{partition_dataset}}, \code{\link{plot_melissa_profiles}},
#'   \code{\link{impute_test_met}}, \code{\link{impute_met_files}},
#'   \code{\link{filter_regions}}
#'
#' @export
melissa <- function(X, K = 3, basis = NULL, delta_0 = NULL, w = NULL,
                    alpha_0 = .5, beta_0 = NULL, vb_max_iter = 300,
                    epsilon_conv = 1e-5, is_kmeans = TRUE,
                    vb_init_nstart = 10, vb_init_max_iter = 20,
                    is_parallel = FALSE, no_cores = 3, is_verbose = TRUE){
  assertthat::assert_that(is.list(X))  # Check that X is a list object...
  assertthat::assert_that(is.list(X[[1]]))  # and its element is a list object
  assertthat::assert_that(vb_init_nstart > 0)  # Check for positive values
  assertthat::assert_that(vb_init_max_iter > 0)  # Check for positive value
  # Create RBF basis object by default
  if (is.null(basis)) {
    warning("Basis object not defined. Using as default M = 3 RBFs.\n")
    basis <- BPRMeth::create_rbf_object(M = 3)
  }
  # Remove rownames
  for (n in 1:length(X)) {
    X[[n]] <- lapply(X = X[[n]], function(x) {rownames(x) <- NULL; return(x)})
  }

  N <- length(X)         # Total number of cells
  M <- length(X[[1]])    # Total number of genomic regions
  D <- basis$M + 1       # Number of basis functions

  # Initialise Dirichlet prior
  if (is.null(delta_0)) {
    delta_0 <- rep(.5, K) + stats::rbeta(K, 1e-1, 1e1)
  }

  # Number of parallel cores
  no_cores <- .parallel_cores(no_cores = no_cores,
                              is_parallel = is_parallel,
                              max_cores = N)
  # List of genes with coverage for each cell
  region_ind <- lapply(X = seq_len(N), FUN = function(n) which(!is.na(X[[n]])))
  # List of cells with coverage for each genomic region
  cell_ind <- lapply(X = seq_len(M), FUN = function(m) which(!is.na(lapply(X, "[[", m))))
  # Pre-compute the design matrices H for efficiency: each entry is a cell
  if (is_parallel) { H <- parallel::mclapply(X = seq_len(N), FUN = function(n)
    init_design_matrix(basis = basis, X = X[[n]], coverage_ind = region_ind[[n]]),
    mc.cores = no_cores)
  }else {H <- lapply(X = seq_len(N), FUN = function(n)
    init_design_matrix(basis = basis, X = X[[n]], coverage_ind = region_ind[[n]]))
  }
  # Extract responses y_{n}
  y <- lapply(X = seq_len(N), FUN = function(n)
    extract_y(X = X[[n]], coverage_ind = region_ind[[n]]))

  # If no initial values
  if (is.null(w)) {
    # Infer MLE profiles for each cell and region
    if (is_parallel) { w_mle <- parallel::mclapply(X = seq_len(N), FUN = function(n)
      BPRMeth::infer_profiles_mle(X = X[[n]][region_ind[[n]]], model = "bernoulli",
                                  basis = basis, H = H[[n]][region_ind[[n]]],
                                  lambda = .5, opt_itnmax = 15)$W,
      mc.cores = no_cores)
    }else{w_mle <- lapply(X = seq_len(N), FUN = function(n)
      BPRMeth::infer_profiles_mle(X = X[[n]][region_ind[[n]]], model = "bernoulli",
                                  basis = basis, H = H[[n]][region_ind[[n]]],
                                  lambda = .5, opt_itnmax = 15)$W)
    }
    # Transform to long format to perform k-means
    W_tmp <- matrix(0, nrow = N, ncol = M * D)
    ww <- array(data = rnorm(M*D*N, 0, 0.01), dim = c(M, D, N))
    for (n in seq_len(N)) { # Iterate over each cell
      # Store optimized w to an array object (genes x basis x cells)
      ww[region_ind[[n]],,n] <- w_mle[[n]]
      W_tmp[n, ] <- c(ww[,,n])
    }
    rm(w_mle)

    # Run mini VB
    lb_prev <- -1e+120
    w <- array(data = 0, dim = c(M, D, K))
    for (t in seq_len(vb_init_nstart)) {
      if (is_kmeans) {
        # Use Kmeans for initial clustering of cells
        cl <- stats::kmeans(W_tmp, K, nstart = 1)
        # Get the mixture components
        C_n <- cl$cluster
        # TODO: Check that k-means does not return empty clusters..
        # Sample randomly one point from each cluster as initial centre
        for (k in seq_len(K)) {
          w[, ,k] <- ww[, , sample(which(C_n == k), 1)]
        }
      }else{# Sample randomly data centers
        w <- array(data = ww[, ,sample(N, K)], dim = c(M, D, K))
      }
      # If only one restart, then break
      if (vb_init_nstart == 1) {
        optimal_w <- w
        break
      }
      # Run mini-VB
      mini_vb <- melissa_inner(H = H, y = y, region_ind = region_ind,
                               cell_ind = cell_ind, K = K, basis = basis,
                               w = w, delta_0 = delta_0, alpha_0 = alpha_0,
                               beta_0 = beta_0, vb_max_iter = vb_init_max_iter,
                               epsilon_conv = epsilon_conv,
                               is_parallel = is_parallel, no_cores = no_cores,
                               is_verbose = is_verbose)
      # Check if NLL is lower and keep the optimal params
      lb_cur <- utils::tail(mini_vb$lb, n = 1)
      # TODO: Best way to obtain initial params after mini-restarts
      # if (lb_cur > lb_prev) { optimal_w <- mini_vb$W; lb_prev <- lb_cur; }
      if (lb_cur > lb_prev) {
        optimal_w <- w
        lb_prev <- lb_cur
      }
    }
  }
  # Run final VB
  obj <- melissa_inner(H = H, y = y, region_ind = region_ind,
                       cell_ind = cell_ind, K = K, basis = basis, w = optimal_w,
                       delta_0 = delta_0, alpha_0 = alpha_0, beta_0 = beta_0,
                       vb_max_iter = vb_max_iter, epsilon_conv = epsilon_conv,
                       is_parallel = is_parallel, no_cores = no_cores,
                       is_verbose = is_verbose)
  # Add names to the estimated parameters for clarity
  names(obj$delta) <- paste0("cluster", seq_len(K))
  names(obj$pi_k) <- paste0("cluster", seq_len(K))
  # colnames(obj$W) <- paste0("cluster", seq_len(K))
  colnames(obj$r_nk) <- paste0("cluster", seq_len(K))
  rownames(obj$r_nk) <- names(X)
  # Get hard cluster assignments for each observation
  # TODO: What should I do with cells that have the same r_nk across clusters?
  # For now I take the first element returned from which..
  obj$labels <- apply(X = obj$r_nk, MARGIN = 1,
                      FUN = function(x) which(x == max(x, na.rm = TRUE))[1])
  names(obj$labels) <- names(X)
  # Subtract \ln(K!) from lower bound to get a better estimate
  obj$lb <- obj$lb - log(factorial(K))
  # Return object
  return(obj)
}

# Compute E[z]
.update_Ez <- function(E_z, mu, y_1, y_0){
  E_z[y_1] <- mu[y_1] + dnorm(-mu[y_1]) / (1 - pnorm(-mu[y_1]))
  E_z[y_0] <- mu[y_0] - dnorm(-mu[y_0]) / pnorm(-mu[y_0])
  return(E_z)
}


##------------------------------------------------------

# Cluster single cells
melissa_inner <- function(H, y, region_ind, cell_ind, K, basis, w, delta_0,
                          alpha_0, beta_0, vb_max_iter, epsilon_conv,
                          is_parallel, no_cores, is_verbose){
  assertthat::assert_that(is.list(H)) # Check that H is a list object
  assertthat::assert_that(is.list(H[[1]])) # Check that H[[1]] is a list object
  N <- length(H)          # Number of cells
  M <- length(H[[1]])     # Number of genomic regions, i.e. genes
  D <- basis$M + 1        # Number of covariates
  assertthat::assert_that(N > 0)
  assertthat::assert_that(M > 0)
  LB <- c(-Inf)           # Store the lower bounds
  r_nk = log_r_nk = log_rho_nk <- matrix(0, nrow = N, ncol = K)
  E_ww <- vector("numeric", length = K)

  # Compute H_{n}'H_{n}
  HH = y_1 = y_0 <- vector(mode = "list", length = N)
  for (n in seq_len(N)) {
    HH[[n]] = y_1[[n]] = y_0[[n]] <- vector(mode = "list", length = M)
    HH[[n]] <- lapply(X = HH[[n]], FUN = function(x) x <- NA)
    y_1[[n]] <- lapply(X = y_1[[n]], FUN = function(x) x <- NA)
    y_0[[n]] <- lapply(X = y_0[[n]], FUN = function(x) x <- NA)

    HH[[n]][region_ind[[n]]] <- lapply(X = H[[n]][region_ind[[n]]],
                                       FUN = function(h) crossprod(h))
    y_1[[n]][region_ind[[n]]] <- lapply(X = y[[n]][region_ind[[n]]],
                                        FUN = function(yy) which(yy == 1))
    y_0[[n]][region_ind[[n]]] <- lapply(X = y[[n]][region_ind[[n]]],
                                        FUN = function(yy) which(yy == 0))
  }
  E_z = E_zz <- y

  # Compute shape parameter of Gamma
  alpha_k <- rep(alpha_0 + M * D / 2, K)
  # Mean for each cluster
  m_k <- w
  # Covariance of each cluster
  S_k <- lapply(X = seq_len(K), function(k) lapply(X = seq_len(M),
                                        FUN = function(m) solve(diag(50, D))))
  # Scale of precision matrix
  if (is.null(beta_0)) {
    beta_0 <- sqrt(alpha_k[1])
  }
  beta_k   <- rep(beta_0, K)
  # Dirichlet parameter
  delta_k  <- delta_0
  # Expectation of log Dirichlet
  e_log_pi <- digamma(delta_k) - digamma(sum(delta_k))
  mk_Sk    <- lapply(X = seq_len(M), FUN = function(m) lapply(X = seq_len(K),
                     FUN = function(k) tcrossprod(m_k[m,,k]) + S_k[[k]][[m]]))
  # Update \mu
  mu <- vector(mode = "list", length = N)
  for (n in seq_len(N)) {
    mu[[n]] <- vector(mode = "list", length = M)
    mu[[n]] <- lapply(X = mu[[n]], FUN = function(x) x <- NA)
    if (D == 1) {
      mu[[n]][region_ind[[n]]] <- lapply(X = region_ind[[n]],
                   FUN = function(m) c(H[[n]][[m]] %*% mean(m_k[m,,])))
    }else {
      mu[[n]][region_ind[[n]]] <- lapply(X = region_ind[[n]],
                   FUN = function(m) c(H[[n]][[m]] %*% rowMeans(m_k[m,,])))
    }
  }
  # Update E[z] and E[z^2]
  E_z  <- lapply(X = seq_len(N), FUN = function(n) {
    l <- E_z[[n]]; l[region_ind[[n]]] <- lapply(X = region_ind[[n]],
          FUN = function(m) .update_Ez(E_z = E_z[[n]][[m]], mu = mu[[n]][[m]],
                                       y_0 = y_0[[n]][[m]], y_1 = y_1[[n]][[m]])
          ); return(l)})
  E_zz <- lapply(X = seq_len(N), FUN = function(n) {
    l <- E_zz[[n]]; l[region_ind[[n]]] <- lapply(X = region_ind[[n]],
          FUN = function(m) 1 + mu[[n]][[m]] * E_z[[n]][[m]]); return(l)})

  # Show progress bar
  if (is_verbose) {
    pb <- utils::txtProgressBar(min = 2, max = vb_max_iter, style = 3)
  }
  # Run VB algorithm until convergence
  for (i in 2:vb_max_iter) {
    ##-------------------------------
    # Variational E-Step
    ##-------------------------------
    if (is_parallel) {
      for (k in seq_len(K)) {
        log_rho_nk[,k] <- e_log_pi[k] + unlist(parallel::mclapply(X = seq_len(N),
          function(n) sum(sapply(X = region_ind[[n]], function(m)
          -0.5*crossprod(E_zz[[n]][[m]]) + m_k[m,,k] %*% t(H[[n]][[m]]) %*%
          E_z[[n]][[m]] - 0.5*matrix.trace(HH[[n]][[m]] %*% mk_Sk[[m]][[k]]))),
          mc.cores = no_cores))
      }
    }else {
      for (k in seq_len(K)) {
        log_rho_nk[,k] <- e_log_pi[k] + sapply(X = seq_len(N), function(n)
          sum(sapply(X = region_ind[[n]], function(m)
          -0.5*crossprod(E_zz[[n]][[m]]) + m_k[m,,k] %*% t(H[[n]][[m]]) %*%
          E_z[[n]][[m]] - 0.5*matrix.trace(HH[[n]][[m]] %*% mk_Sk[[m]][[k]]))))
      }
    }
    # Calculate responsibilities using logSumExp for numerical stability
    log_r_nk <- log_rho_nk - apply(log_rho_nk, 1, log_sum_exp)
    r_nk     <- exp(log_r_nk)
    ##-------------------------------
    # Variational M-Step
    ##-------------------------------
    # Update Dirichlet parameter
    delta_k <- delta_0 + colSums(r_nk)
    # TODO: Compute expected value of mixing proportions
    pi_k <- (delta_0 + colSums(r_nk)) / (K * delta_0 + N)

    # Iterate over each cluster
    for (k in seq_len(K)) {
      if (is_parallel) {
        tmp <- parallel::mclapply(X = seq_len(M), function(m) {
          # Extract temporary objects
          tmp_HH <- lapply(HH, "[[", m)
          tmp_H  <- lapply(H, "[[", m)
          tmp_Ez <- lapply(E_z, "[[", m)
          # Update covariance for Gaussian
          S_k <- solve(diag(alpha_k[k]/beta_k[k] + 1e-7, D) +
                    .add_func(lapply(X = cell_ind[[m]],
                                      FUN = function(n) tmp_HH[[n]]*r_nk[n,k])))
          # Update mean for Gaussian
          m_k <- S_k %*% .add_func(lapply(X = cell_ind[[m]],
                    FUN = function(n) t(tmp_H[[n]]) %*% tmp_Ez[[n]]*r_nk[n,k]))
          # Compute E[w^Tw]
          E_ww <- crossprod(m_k) + matrixcalc::matrix.trace(S_k)
          return(list(S_k = S_k, m_k = m_k, E_ww = E_ww))
        }, mc.cores = no_cores)
      } else{
        tmp <- lapply(X = seq_len(M), function(m) {
          # Extract temporary objects
          tmp_HH <- lapply(HH, "[[", m)
          tmp_H  <- lapply(H, "[[", m)
          tmp_Ez <- lapply(E_z, "[[", m)
          # Update covariance for Gaussian
          # TODO: How to make this numerically stable?
          # Does the addition have strong effects?
          S_k <- solve(diag(alpha_k[k]/beta_k[k] + 1e-7, D) +
                    .add_func(lapply(X = cell_ind[[m]],
                                    FUN = function(n) tmp_HH[[n]]*r_nk[n,k])))
          # Update mean for Gaussian
          m_k <- S_k %*% .add_func(lapply(X = cell_ind[[m]],
                    FUN = function(n) t(tmp_H[[n]]) %*% tmp_Ez[[n]]*r_nk[n,k]))
          # Compute E[w^Tw]
          E_ww <- crossprod(m_k) + matrixcalc::matrix.trace(S_k)
          return(list(S_k = S_k, m_k = m_k, E_ww = E_ww))
        })
      }
      # Update covariance
      S_k[[k]] <- lapply(tmp, "[[", "S_k")
      # Update mean
      m_k[,,k] <- t(sapply(tmp, "[[", "m_k"))
      # Update E[w^Tw]
      E_ww[k] <- sum(sapply(tmp, "[[", "E_ww"))
      # Update \beta_k parameter for Gamma
      beta_k[k]  <- beta_0 + 0.5*E_ww[k]
      # Check beta parameter for numerical issues
      # if (is.nan(beta_k[k]) | is.na(beta_k[k]) ) { beta_k[k] <- 1e10}
      # TODO: Does this affect model penalisation??
      if (beta_k[k] > 10*alpha_k[k]) {
        beta_k[k] <- 10*alpha_k[k]
      }
    }

    # If parallel mode
    if (is_parallel) {
      # Iterate over cells
      tmp <- parallel::mclapply(X = seq_len(N), FUN = function(n) {
        # Update \mu
        tmp_mu <- mu[[n]]
        tmp_mu[region_ind[[n]]] <- lapply(X = region_ind[[n]], FUN = function(m)
          c(H[[n]][[m]] %*% rowSums(matrix(sapply(X = seq_len(K), FUN = function(k)
            r_nk[n,k]*m_k[m,,k]), ncol = K))))
        # Update E[z]
        tmp_E_z <- E_z[[n]]
        tmp_E_z[region_ind[[n]]] <- lapply(X = region_ind[[n]], FUN =
          function(m) .update_Ez(E_z = E_z[[n]][[m]], mu = tmp_mu[[m]],
                                 y_0 = y_0[[n]][[m]], y_1 = y_1[[n]][[m]]))
        # Update E[z^2]
        tmp_E_zz <- E_zz[[n]]
        tmp_E_zz[region_ind[[n]]] <- lapply(X = region_ind[[n]], FUN =
                                    function(m) 1 + tmp_mu[[m]] * tmp_E_z[[m]])
        # Return list with results
        return(list(tmp_mu = tmp_mu, tmp_E_z = tmp_E_z, tmp_E_zz = tmp_E_zz))
      }, mc.cores = no_cores)
    } else {
      # Iterate over cells
      tmp <- lapply(X = seq_len(N), FUN = function(n) {
        # Update \mu
        tmp_mu <- mu[[n]]
        tmp_mu[region_ind[[n]]] <- lapply(X = region_ind[[n]], FUN = function(m)
          c(H[[n]][[m]] %*% rowSums(matrix(sapply(X = seq_len(K), FUN =
                                function(k) r_nk[n,k]*m_k[m,,k]), ncol = K))))
        # Update E[z]
        tmp_E_z <- E_z[[n]]
        tmp_E_z[region_ind[[n]]] <- lapply(X = region_ind[[n]], FUN =
          function(m) .update_Ez(E_z = E_z[[n]][[m]], mu = tmp_mu[[m]],
                                 y_0 = y_0[[n]][[m]], y_1 = y_1[[n]][[m]]))
        # Update E[z^2]
        tmp_E_zz <- E_zz[[n]]
        tmp_E_zz[region_ind[[n]]] <- lapply(X = region_ind[[n]], FUN =
                                    function(m) 1 + tmp_mu[[m]] * tmp_E_z[[m]])
        # Return list with results
        return(list(tmp_mu = tmp_mu, tmp_E_z = tmp_E_z, tmp_E_zz = tmp_E_zz))
      })
    }
    # Concatenate final results in correct format
    mu <- lapply(tmp, "[[", "tmp_mu")
    E_z <- lapply(tmp, "[[", "tmp_E_z")
    E_zz <- lapply(tmp, "[[", "tmp_E_zz")
    rm(tmp)
    # Update expectations over \ln\pi
    e_log_pi  <- digamma(delta_k) - digamma(sum(delta_k))
    # Compute expectation of E[a]
    E_alpha <- alpha_k / beta_k
    # TODO: Perform model selection using MLE of mixing proportions
    # e_log_pi <- colMeans(r_nk)

    # Compute mm^{T}+S
    mk_Sk <- lapply(X = seq_len(M), FUN = function(m) lapply(X = seq_len(K),
                    FUN = function(k) tcrossprod(m_k[m, , k]) + S_k[[k]][[m]]))
    ##-------------------------------
    # Variational lower bound
    ##-------------------------------
    # For efficiency we compute it every 10 iterations and surely on
    # the maximum iteration threshold
    # TODO: Find a better way to not obtain Inf in the pnorm function
    if (i %% 10 == 0 | i == vb_max_iter) {
      if (is_parallel) {
        # TODO: Find a better way to not obtain Inf in the pnorm function
        lb_pz_qz <- sum(unlist(parallel::mclapply(X = seq_len(N), FUN = function(n)
          sum(sapply(X = region_ind[[n]], FUN = function(m)
            0.5*crossprod(mu[[n]][[m]]) + sum(y[[n]][[m]] *
            log(1 - (pnorm(-mu[[n]][[m]]) - 1e-10) ) + (1 - y[[n]][[m]]) *
            log(pnorm(-mu[[n]][[m]]) + 1e-10)) - 0.5*sum(sapply(X = seq_len(K), FUN =
            function(k) r_nk[n,k] * matrix.trace(HH[[n]][[m]] %*% mk_Sk[[m]][[k]]) )))),
          mc.cores = no_cores)))
      }else {
        lb_pz_qz <- sum(sapply(X = seq_len(N), FUN = function(n)
          sum(sapply(X = region_ind[[n]], FUN = function(m) 0.5*crossprod(mu[[n]][[m]]) +
          sum(y[[n]][[m]] * log(1 - (pnorm(-mu[[n]][[m]]) - 1e-10) ) + (1 - y[[n]][[m]]) *
          log(pnorm(-mu[[n]][[m]]) + 1e-10)) - 0.5*sum(sapply(X = seq_len(K), FUN = function(k)
          r_nk[n,k] * matrix.trace(HH[[n]][[m]] %*% mk_Sk[[m]][[k]]) )) ))))
      }
      lb_p_w   <- sum(-0.5*M*D*log(2*pi) + 0.5*M*D*(digamma(alpha_k) -
                                              log(beta_k)) - 0.5*E_alpha*E_ww)
      lb_p_c   <- sum(r_nk %*% e_log_pi)
      lb_p_pi  <- sum((delta_0 - 1)*e_log_pi) + lgamma(sum(delta_0)) -
        sum(lgamma(delta_0))
      lb_p_tau <- sum(alpha_0*log(beta_0) + (alpha_0 - 1)*(digamma(alpha_k) -
                                log(beta_k)) - beta_0*E_alpha - lgamma(alpha_0))
      lb_q_c   <- sum(r_nk*log_r_nk)
      lb_q_pi  <- sum((delta_k - 1)*e_log_pi) + lgamma(sum(delta_k)) -
        sum(lgamma(delta_k))
      lb_q_w   <- sum(sapply(X = seq_len(M), FUN = function(m)
        sum(-0.5*log(sapply(X = seq_len(K), FUN = function(k) det(S_k[[k]][[m]]))) -
              0.5*D*(1 + log(2*pi)))))
      lb_q_tau <- sum(-lgamma(alpha_k) + (alpha_k - 1)*digamma(alpha_k) +
                        log(beta_k) - alpha_k)
      # Sum all parts to compute lower bound
      LB <- c(LB, lb_pz_qz + lb_p_c + lb_p_pi + lb_p_w + lb_p_tau - lb_q_c -
                lb_q_pi - lb_q_w - lb_q_tau)
      iter <- length(LB)
      # Check if lower bound decreases
      if (LB[iter] < LB[iter - 1]) {
        warning("Warning: Lower bound decreases!\n")
      }
      # Check for convergence
      if (abs(LB[iter] - LB[iter - 1]) < epsilon_conv) {
        break
      }
      # Show VB difference
      if (is_verbose) {
        if (i %% 50 == 0) {
          message("\r","It:\t",i,"\tLB:\t",LB[iter],"\tDiff:\t",
              LB[iter] - LB[iter - 1],"\n")
        }
      }
    }
    # Check if VB converged in the given maximum iterations
    if (i == vb_max_iter) {
      warning("VB did not converge!\n")
    }
    if (is_verbose) {
      utils::setTxtProgressBar(pb, i)
    }
  }
  if (is_verbose) {
    close(pb)
  }

  # Store the object
  obj <- structure(list(W = m_k, W_Sigma = S_k, r_nk = r_nk, delta = delta_k,
                        alpha = alpha_k, beta = beta_k, basis = basis,
                        pi_k = pi_k, lb = LB, delta_0 = delta_0,
                        alpha_0 = alpha_0, beta_0 = beta_0),
                   class = "melissa")
  return(obj)
}

Try the Melissa package in your browser

Any scripts or data that you put into this service are public.

Melissa documentation built on Nov. 8, 2020, 5:37 p.m.