Nothing
#' @name melissa
#' @rdname melissa_vb
#' @aliases melissa_cluster, melissa_impute, melissa_vb
#'
#' @title Cluster and impute single cell methylomes using VB
#'
#' @description \code{melissa} clusters and imputes single cells based on their
#' methylome landscape on specific genomic regions, e.g. promoters, using the
#' Variational Bayes (VB) EM-like algorithm.
#'
#' @param X The input data, which has to be a \link[base]{list} of elements of
#' length N, where N are the total number of cells. Each element in the list
#' contains another list of length M, where M is the total number of genomic
#' regions, e.g. promoters. Each element in the inner list is an \code{I X 2}
#' matrix, where I are the total number of observations. The first column
#' contains the input observations x (i.e. CpG locations) and the 2nd columns
#' contains the corresponding methylation level.
#' @param K Integer denoting the total number of clusters K.
#' @param basis A 'basis' object. E.g. see create_basis function from BPRMeth
#' package. If NULL, will an RBF object with 3 basis functions will be
#' created.
#' @param delta_0 Parameter vector of the Dirichlet prior on the mixing
#' proportions pi.
#' @param w Optional, an Mx(D)xK array of the initial parameters, where first
#' dimension are the genomic regions M, 2nd the number of covariates D (i.e.
#' basis functions), and 3rd are the clusters K. If NULL, will be assigned
#' with default values.
#' @param alpha_0 Hyperparameter: shape parameter for Gamma distribution. A
#' Gamma distribution is used as prior for the precision parameter tau.
#' @param beta_0 Hyperparameter: rate parameter for Gamma distribution. A Gamma
#' distribution is used as prior for the precision parameter tau.
#' @param vb_max_iter Integer denoting the maximum number of VB iterations.
#' @param epsilon_conv Numeric denoting the convergence threshold for VB.
#' @param is_kmeans Logical, use Kmeans for initialization of model parameters.
#' @param vb_init_nstart Number of VB random starts for finding better
#' initialization.
#' @param vb_init_max_iter Maximum number of mini-VB iterations.
#' @param is_parallel Logical, indicating if code should be run in parallel.
#' @param no_cores Number of cores to be used, default is max_no_cores - 1.
#' @param is_verbose Logical, print results during VB iterations.
#'
#' @return An object of class \code{melissa} with the following elements:
#' \itemize{ \item{ \code{W}: An (M+1) X K matrix with the optimized parameter
#' values for each cluster, M are the number of basis functions. Each column
#' of the matrix corresponds a different cluster k.} \item{ \code{W_Sigma}: A
#' list with the covariance matrices of the posterior parmateter W for each
#' cluster k.} \item{ \code{r_nk}: An (N X K) responsibility matrix of each
#' observations being explained by a specific cluster. } \item{ \code{delta}:
#' Optimized Dirichlet paramter for the mixing proportions. } \item{
#' \code{alpha}: Optimized shape parameter of Gamma distribution. } \item{
#' \code{beta}: Optimized rate paramter of the Gamma distribution } \item{
#' \code{basis}: The basis object. } \item{\code{lb}: The lower bound vector.}
#' \item{\code{labels}: Cluster assignment labels.} \item{ \code{pi_k}:
#' Expected value of mixing proportions.} }
#'
#' @section Details: The modelling and mathematical details for clustering
#' profiles using mean-field variational inference are explained here:
#' \url{http://rpubs.com/cakapourani/} . More specifically: \itemize{\item{For
#' Binomial/Bernoulli observation model check:
#' \url{http://rpubs.com/cakapourani/vb-mixture-bpr}} \item{For Gaussian
#' observation model check: \url{http://rpubs.com/cakapourani/vb-mixture-lr}}}
#'
#' @author C.A.Kapourani \email{C.A.Kapourani@@ed.ac.uk}
#'
#' @examples
#' # Example of running Melissa on synthetic data
#'
#' # Create RBF basis object with 4 RBFs
#' basis_obj <- BPRMeth::create_rbf_object(M = 4)
#'
#' set.seed(15)
#' # Run Melissa
#' melissa_obj <- melissa(X = melissa_synth_dt$met, K = 2, basis = basis_obj,
#' vb_max_iter = 10, vb_init_nstart = 1, vb_init_max_iter = 5,
#' is_parallel = FALSE, is_verbose = FALSE)
#'
#' # Extract mixing proportions
#' print(melissa_obj$pi_k)
#'
#' @seealso \code{\link{create_melissa_data_obj}},
#' \code{\link{partition_dataset}}, \code{\link{plot_melissa_profiles}},
#' \code{\link{impute_test_met}}, \code{\link{impute_met_files}},
#' \code{\link{filter_regions}}
#'
#' @export
melissa <- function(X, K = 3, basis = NULL, delta_0 = NULL, w = NULL,
alpha_0 = .5, beta_0 = NULL, vb_max_iter = 300,
epsilon_conv = 1e-5, is_kmeans = TRUE,
vb_init_nstart = 10, vb_init_max_iter = 20,
is_parallel = FALSE, no_cores = 3, is_verbose = TRUE){
assertthat::assert_that(is.list(X)) # Check that X is a list object...
assertthat::assert_that(is.list(X[[1]])) # and its element is a list object
assertthat::assert_that(vb_init_nstart > 0) # Check for positive values
assertthat::assert_that(vb_init_max_iter > 0) # Check for positive value
# Create RBF basis object by default
if (is.null(basis)) {
warning("Basis object not defined. Using as default M = 3 RBFs.\n")
basis <- BPRMeth::create_rbf_object(M = 3)
}
# Remove rownames
for (n in 1:length(X)) {
X[[n]] <- lapply(X = X[[n]], function(x) {rownames(x) <- NULL; return(x)})
}
N <- length(X) # Total number of cells
M <- length(X[[1]]) # Total number of genomic regions
D <- basis$M + 1 # Number of basis functions
# Initialise Dirichlet prior
if (is.null(delta_0)) {
delta_0 <- rep(.5, K) + stats::rbeta(K, 1e-1, 1e1)
}
# Number of parallel cores
no_cores <- .parallel_cores(no_cores = no_cores,
is_parallel = is_parallel,
max_cores = N)
# List of genes with coverage for each cell
region_ind <- lapply(X = seq_len(N), FUN = function(n) which(!is.na(X[[n]])))
# List of cells with coverage for each genomic region
cell_ind <- lapply(X = seq_len(M), FUN = function(m) which(!is.na(lapply(X, "[[", m))))
# Pre-compute the design matrices H for efficiency: each entry is a cell
if (is_parallel) { H <- parallel::mclapply(X = seq_len(N), FUN = function(n)
init_design_matrix(basis = basis, X = X[[n]], coverage_ind = region_ind[[n]]),
mc.cores = no_cores)
}else {H <- lapply(X = seq_len(N), FUN = function(n)
init_design_matrix(basis = basis, X = X[[n]], coverage_ind = region_ind[[n]]))
}
# Extract responses y_{n}
y <- lapply(X = seq_len(N), FUN = function(n)
extract_y(X = X[[n]], coverage_ind = region_ind[[n]]))
# If no initial values
if (is.null(w)) {
# Infer MLE profiles for each cell and region
if (is_parallel) { w_mle <- parallel::mclapply(X = seq_len(N), FUN = function(n)
BPRMeth::infer_profiles_mle(X = X[[n]][region_ind[[n]]], model = "bernoulli",
basis = basis, H = H[[n]][region_ind[[n]]],
lambda = .5, opt_itnmax = 15)$W,
mc.cores = no_cores)
}else{w_mle <- lapply(X = seq_len(N), FUN = function(n)
BPRMeth::infer_profiles_mle(X = X[[n]][region_ind[[n]]], model = "bernoulli",
basis = basis, H = H[[n]][region_ind[[n]]],
lambda = .5, opt_itnmax = 15)$W)
}
# Transform to long format to perform k-means
W_tmp <- matrix(0, nrow = N, ncol = M * D)
ww <- array(data = rnorm(M*D*N, 0, 0.01), dim = c(M, D, N))
for (n in seq_len(N)) { # Iterate over each cell
# Store optimized w to an array object (genes x basis x cells)
ww[region_ind[[n]],,n] <- w_mle[[n]]
W_tmp[n, ] <- c(ww[,,n])
}
rm(w_mle)
# Run mini VB
lb_prev <- -1e+120
w <- array(data = 0, dim = c(M, D, K))
for (t in seq_len(vb_init_nstart)) {
if (is_kmeans) {
# Use Kmeans for initial clustering of cells
cl <- stats::kmeans(W_tmp, K, nstart = 1)
# Get the mixture components
C_n <- cl$cluster
# TODO: Check that k-means does not return empty clusters..
# Sample randomly one point from each cluster as initial centre
for (k in seq_len(K)) {
w[, ,k] <- ww[, , sample(which(C_n == k), 1)]
}
}else{# Sample randomly data centers
w <- array(data = ww[, ,sample(N, K)], dim = c(M, D, K))
}
# If only one restart, then break
if (vb_init_nstart == 1) {
optimal_w <- w
break
}
# Run mini-VB
mini_vb <- melissa_inner(H = H, y = y, region_ind = region_ind,
cell_ind = cell_ind, K = K, basis = basis,
w = w, delta_0 = delta_0, alpha_0 = alpha_0,
beta_0 = beta_0, vb_max_iter = vb_init_max_iter,
epsilon_conv = epsilon_conv,
is_parallel = is_parallel, no_cores = no_cores,
is_verbose = is_verbose)
# Check if NLL is lower and keep the optimal params
lb_cur <- utils::tail(mini_vb$lb, n = 1)
# TODO: Best way to obtain initial params after mini-restarts
# if (lb_cur > lb_prev) { optimal_w <- mini_vb$W; lb_prev <- lb_cur; }
if (lb_cur > lb_prev) {
optimal_w <- w
lb_prev <- lb_cur
}
}
}
# Run final VB
obj <- melissa_inner(H = H, y = y, region_ind = region_ind,
cell_ind = cell_ind, K = K, basis = basis, w = optimal_w,
delta_0 = delta_0, alpha_0 = alpha_0, beta_0 = beta_0,
vb_max_iter = vb_max_iter, epsilon_conv = epsilon_conv,
is_parallel = is_parallel, no_cores = no_cores,
is_verbose = is_verbose)
# Add names to the estimated parameters for clarity
names(obj$delta) <- paste0("cluster", seq_len(K))
names(obj$pi_k) <- paste0("cluster", seq_len(K))
# colnames(obj$W) <- paste0("cluster", seq_len(K))
colnames(obj$r_nk) <- paste0("cluster", seq_len(K))
rownames(obj$r_nk) <- names(X)
# Get hard cluster assignments for each observation
# TODO: What should I do with cells that have the same r_nk across clusters?
# For now I take the first element returned from which..
obj$labels <- apply(X = obj$r_nk, MARGIN = 1,
FUN = function(x) which(x == max(x, na.rm = TRUE))[1])
names(obj$labels) <- names(X)
# Subtract \ln(K!) from lower bound to get a better estimate
obj$lb <- obj$lb - log(factorial(K))
# Return object
return(obj)
}
# Compute E[z]
.update_Ez <- function(E_z, mu, y_1, y_0){
E_z[y_1] <- mu[y_1] + dnorm(-mu[y_1]) / (1 - pnorm(-mu[y_1]))
E_z[y_0] <- mu[y_0] - dnorm(-mu[y_0]) / pnorm(-mu[y_0])
return(E_z)
}
##------------------------------------------------------
# Cluster single cells
melissa_inner <- function(H, y, region_ind, cell_ind, K, basis, w, delta_0,
alpha_0, beta_0, vb_max_iter, epsilon_conv,
is_parallel, no_cores, is_verbose){
assertthat::assert_that(is.list(H)) # Check that H is a list object
assertthat::assert_that(is.list(H[[1]])) # Check that H[[1]] is a list object
N <- length(H) # Number of cells
M <- length(H[[1]]) # Number of genomic regions, i.e. genes
D <- basis$M + 1 # Number of covariates
assertthat::assert_that(N > 0)
assertthat::assert_that(M > 0)
LB <- c(-Inf) # Store the lower bounds
r_nk = log_r_nk = log_rho_nk <- matrix(0, nrow = N, ncol = K)
E_ww <- vector("numeric", length = K)
# Compute H_{n}'H_{n}
HH = y_1 = y_0 <- vector(mode = "list", length = N)
for (n in seq_len(N)) {
HH[[n]] = y_1[[n]] = y_0[[n]] <- vector(mode = "list", length = M)
HH[[n]] <- lapply(X = HH[[n]], FUN = function(x) x <- NA)
y_1[[n]] <- lapply(X = y_1[[n]], FUN = function(x) x <- NA)
y_0[[n]] <- lapply(X = y_0[[n]], FUN = function(x) x <- NA)
HH[[n]][region_ind[[n]]] <- lapply(X = H[[n]][region_ind[[n]]],
FUN = function(h) crossprod(h))
y_1[[n]][region_ind[[n]]] <- lapply(X = y[[n]][region_ind[[n]]],
FUN = function(yy) which(yy == 1))
y_0[[n]][region_ind[[n]]] <- lapply(X = y[[n]][region_ind[[n]]],
FUN = function(yy) which(yy == 0))
}
E_z = E_zz <- y
# Compute shape parameter of Gamma
alpha_k <- rep(alpha_0 + M * D / 2, K)
# Mean for each cluster
m_k <- w
# Covariance of each cluster
S_k <- lapply(X = seq_len(K), function(k) lapply(X = seq_len(M),
FUN = function(m) solve(diag(50, D))))
# Scale of precision matrix
if (is.null(beta_0)) {
beta_0 <- sqrt(alpha_k[1])
}
beta_k <- rep(beta_0, K)
# Dirichlet parameter
delta_k <- delta_0
# Expectation of log Dirichlet
e_log_pi <- digamma(delta_k) - digamma(sum(delta_k))
mk_Sk <- lapply(X = seq_len(M), FUN = function(m) lapply(X = seq_len(K),
FUN = function(k) tcrossprod(m_k[m,,k]) + S_k[[k]][[m]]))
# Update \mu
mu <- vector(mode = "list", length = N)
for (n in seq_len(N)) {
mu[[n]] <- vector(mode = "list", length = M)
mu[[n]] <- lapply(X = mu[[n]], FUN = function(x) x <- NA)
if (D == 1) {
mu[[n]][region_ind[[n]]] <- lapply(X = region_ind[[n]],
FUN = function(m) c(H[[n]][[m]] %*% mean(m_k[m,,])))
}else {
mu[[n]][region_ind[[n]]] <- lapply(X = region_ind[[n]],
FUN = function(m) c(H[[n]][[m]] %*% rowMeans(m_k[m,,])))
}
}
# Update E[z] and E[z^2]
E_z <- lapply(X = seq_len(N), FUN = function(n) {
l <- E_z[[n]]; l[region_ind[[n]]] <- lapply(X = region_ind[[n]],
FUN = function(m) .update_Ez(E_z = E_z[[n]][[m]], mu = mu[[n]][[m]],
y_0 = y_0[[n]][[m]], y_1 = y_1[[n]][[m]])
); return(l)})
E_zz <- lapply(X = seq_len(N), FUN = function(n) {
l <- E_zz[[n]]; l[region_ind[[n]]] <- lapply(X = region_ind[[n]],
FUN = function(m) 1 + mu[[n]][[m]] * E_z[[n]][[m]]); return(l)})
# Show progress bar
if (is_verbose) {
pb <- utils::txtProgressBar(min = 2, max = vb_max_iter, style = 3)
}
# Run VB algorithm until convergence
for (i in 2:vb_max_iter) {
##-------------------------------
# Variational E-Step
##-------------------------------
if (is_parallel) {
for (k in seq_len(K)) {
log_rho_nk[,k] <- e_log_pi[k] + unlist(parallel::mclapply(X = seq_len(N),
function(n) sum(sapply(X = region_ind[[n]], function(m)
-0.5*crossprod(E_zz[[n]][[m]]) + m_k[m,,k] %*% t(H[[n]][[m]]) %*%
E_z[[n]][[m]] - 0.5*matrix.trace(HH[[n]][[m]] %*% mk_Sk[[m]][[k]]))),
mc.cores = no_cores))
}
}else {
for (k in seq_len(K)) {
log_rho_nk[,k] <- e_log_pi[k] + sapply(X = seq_len(N), function(n)
sum(sapply(X = region_ind[[n]], function(m)
-0.5*crossprod(E_zz[[n]][[m]]) + m_k[m,,k] %*% t(H[[n]][[m]]) %*%
E_z[[n]][[m]] - 0.5*matrix.trace(HH[[n]][[m]] %*% mk_Sk[[m]][[k]]))))
}
}
# Calculate responsibilities using logSumExp for numerical stability
log_r_nk <- log_rho_nk - apply(log_rho_nk, 1, log_sum_exp)
r_nk <- exp(log_r_nk)
##-------------------------------
# Variational M-Step
##-------------------------------
# Update Dirichlet parameter
delta_k <- delta_0 + colSums(r_nk)
# TODO: Compute expected value of mixing proportions
pi_k <- (delta_0 + colSums(r_nk)) / (K * delta_0 + N)
# Iterate over each cluster
for (k in seq_len(K)) {
if (is_parallel) {
tmp <- parallel::mclapply(X = seq_len(M), function(m) {
# Extract temporary objects
tmp_HH <- lapply(HH, "[[", m)
tmp_H <- lapply(H, "[[", m)
tmp_Ez <- lapply(E_z, "[[", m)
# Update covariance for Gaussian
S_k <- solve(diag(alpha_k[k]/beta_k[k] + 1e-7, D) +
.add_func(lapply(X = cell_ind[[m]],
FUN = function(n) tmp_HH[[n]]*r_nk[n,k])))
# Update mean for Gaussian
m_k <- S_k %*% .add_func(lapply(X = cell_ind[[m]],
FUN = function(n) t(tmp_H[[n]]) %*% tmp_Ez[[n]]*r_nk[n,k]))
# Compute E[w^Tw]
E_ww <- crossprod(m_k) + matrixcalc::matrix.trace(S_k)
return(list(S_k = S_k, m_k = m_k, E_ww = E_ww))
}, mc.cores = no_cores)
} else{
tmp <- lapply(X = seq_len(M), function(m) {
# Extract temporary objects
tmp_HH <- lapply(HH, "[[", m)
tmp_H <- lapply(H, "[[", m)
tmp_Ez <- lapply(E_z, "[[", m)
# Update covariance for Gaussian
# TODO: How to make this numerically stable?
# Does the addition have strong effects?
S_k <- solve(diag(alpha_k[k]/beta_k[k] + 1e-7, D) +
.add_func(lapply(X = cell_ind[[m]],
FUN = function(n) tmp_HH[[n]]*r_nk[n,k])))
# Update mean for Gaussian
m_k <- S_k %*% .add_func(lapply(X = cell_ind[[m]],
FUN = function(n) t(tmp_H[[n]]) %*% tmp_Ez[[n]]*r_nk[n,k]))
# Compute E[w^Tw]
E_ww <- crossprod(m_k) + matrixcalc::matrix.trace(S_k)
return(list(S_k = S_k, m_k = m_k, E_ww = E_ww))
})
}
# Update covariance
S_k[[k]] <- lapply(tmp, "[[", "S_k")
# Update mean
m_k[,,k] <- t(sapply(tmp, "[[", "m_k"))
# Update E[w^Tw]
E_ww[k] <- sum(sapply(tmp, "[[", "E_ww"))
# Update \beta_k parameter for Gamma
beta_k[k] <- beta_0 + 0.5*E_ww[k]
# Check beta parameter for numerical issues
# if (is.nan(beta_k[k]) | is.na(beta_k[k]) ) { beta_k[k] <- 1e10}
# TODO: Does this affect model penalisation??
if (beta_k[k] > 10*alpha_k[k]) {
beta_k[k] <- 10*alpha_k[k]
}
}
# If parallel mode
if (is_parallel) {
# Iterate over cells
tmp <- parallel::mclapply(X = seq_len(N), FUN = function(n) {
# Update \mu
tmp_mu <- mu[[n]]
tmp_mu[region_ind[[n]]] <- lapply(X = region_ind[[n]], FUN = function(m)
c(H[[n]][[m]] %*% rowSums(matrix(sapply(X = seq_len(K), FUN = function(k)
r_nk[n,k]*m_k[m,,k]), ncol = K))))
# Update E[z]
tmp_E_z <- E_z[[n]]
tmp_E_z[region_ind[[n]]] <- lapply(X = region_ind[[n]], FUN =
function(m) .update_Ez(E_z = E_z[[n]][[m]], mu = tmp_mu[[m]],
y_0 = y_0[[n]][[m]], y_1 = y_1[[n]][[m]]))
# Update E[z^2]
tmp_E_zz <- E_zz[[n]]
tmp_E_zz[region_ind[[n]]] <- lapply(X = region_ind[[n]], FUN =
function(m) 1 + tmp_mu[[m]] * tmp_E_z[[m]])
# Return list with results
return(list(tmp_mu = tmp_mu, tmp_E_z = tmp_E_z, tmp_E_zz = tmp_E_zz))
}, mc.cores = no_cores)
} else {
# Iterate over cells
tmp <- lapply(X = seq_len(N), FUN = function(n) {
# Update \mu
tmp_mu <- mu[[n]]
tmp_mu[region_ind[[n]]] <- lapply(X = region_ind[[n]], FUN = function(m)
c(H[[n]][[m]] %*% rowSums(matrix(sapply(X = seq_len(K), FUN =
function(k) r_nk[n,k]*m_k[m,,k]), ncol = K))))
# Update E[z]
tmp_E_z <- E_z[[n]]
tmp_E_z[region_ind[[n]]] <- lapply(X = region_ind[[n]], FUN =
function(m) .update_Ez(E_z = E_z[[n]][[m]], mu = tmp_mu[[m]],
y_0 = y_0[[n]][[m]], y_1 = y_1[[n]][[m]]))
# Update E[z^2]
tmp_E_zz <- E_zz[[n]]
tmp_E_zz[region_ind[[n]]] <- lapply(X = region_ind[[n]], FUN =
function(m) 1 + tmp_mu[[m]] * tmp_E_z[[m]])
# Return list with results
return(list(tmp_mu = tmp_mu, tmp_E_z = tmp_E_z, tmp_E_zz = tmp_E_zz))
})
}
# Concatenate final results in correct format
mu <- lapply(tmp, "[[", "tmp_mu")
E_z <- lapply(tmp, "[[", "tmp_E_z")
E_zz <- lapply(tmp, "[[", "tmp_E_zz")
rm(tmp)
# Update expectations over \ln\pi
e_log_pi <- digamma(delta_k) - digamma(sum(delta_k))
# Compute expectation of E[a]
E_alpha <- alpha_k / beta_k
# TODO: Perform model selection using MLE of mixing proportions
# e_log_pi <- colMeans(r_nk)
# Compute mm^{T}+S
mk_Sk <- lapply(X = seq_len(M), FUN = function(m) lapply(X = seq_len(K),
FUN = function(k) tcrossprod(m_k[m, , k]) + S_k[[k]][[m]]))
##-------------------------------
# Variational lower bound
##-------------------------------
# For efficiency we compute it every 10 iterations and surely on
# the maximum iteration threshold
# TODO: Find a better way to not obtain Inf in the pnorm function
if (i %% 10 == 0 | i == vb_max_iter) {
if (is_parallel) {
# TODO: Find a better way to not obtain Inf in the pnorm function
lb_pz_qz <- sum(unlist(parallel::mclapply(X = seq_len(N), FUN = function(n)
sum(sapply(X = region_ind[[n]], FUN = function(m)
0.5*crossprod(mu[[n]][[m]]) + sum(y[[n]][[m]] *
log(1 - (pnorm(-mu[[n]][[m]]) - 1e-10) ) + (1 - y[[n]][[m]]) *
log(pnorm(-mu[[n]][[m]]) + 1e-10)) - 0.5*sum(sapply(X = seq_len(K), FUN =
function(k) r_nk[n,k] * matrix.trace(HH[[n]][[m]] %*% mk_Sk[[m]][[k]]) )))),
mc.cores = no_cores)))
}else {
lb_pz_qz <- sum(sapply(X = seq_len(N), FUN = function(n)
sum(sapply(X = region_ind[[n]], FUN = function(m) 0.5*crossprod(mu[[n]][[m]]) +
sum(y[[n]][[m]] * log(1 - (pnorm(-mu[[n]][[m]]) - 1e-10) ) + (1 - y[[n]][[m]]) *
log(pnorm(-mu[[n]][[m]]) + 1e-10)) - 0.5*sum(sapply(X = seq_len(K), FUN = function(k)
r_nk[n,k] * matrix.trace(HH[[n]][[m]] %*% mk_Sk[[m]][[k]]) )) ))))
}
lb_p_w <- sum(-0.5*M*D*log(2*pi) + 0.5*M*D*(digamma(alpha_k) -
log(beta_k)) - 0.5*E_alpha*E_ww)
lb_p_c <- sum(r_nk %*% e_log_pi)
lb_p_pi <- sum((delta_0 - 1)*e_log_pi) + lgamma(sum(delta_0)) -
sum(lgamma(delta_0))
lb_p_tau <- sum(alpha_0*log(beta_0) + (alpha_0 - 1)*(digamma(alpha_k) -
log(beta_k)) - beta_0*E_alpha - lgamma(alpha_0))
lb_q_c <- sum(r_nk*log_r_nk)
lb_q_pi <- sum((delta_k - 1)*e_log_pi) + lgamma(sum(delta_k)) -
sum(lgamma(delta_k))
lb_q_w <- sum(sapply(X = seq_len(M), FUN = function(m)
sum(-0.5*log(sapply(X = seq_len(K), FUN = function(k) det(S_k[[k]][[m]]))) -
0.5*D*(1 + log(2*pi)))))
lb_q_tau <- sum(-lgamma(alpha_k) + (alpha_k - 1)*digamma(alpha_k) +
log(beta_k) - alpha_k)
# Sum all parts to compute lower bound
LB <- c(LB, lb_pz_qz + lb_p_c + lb_p_pi + lb_p_w + lb_p_tau - lb_q_c -
lb_q_pi - lb_q_w - lb_q_tau)
iter <- length(LB)
# Check if lower bound decreases
if (LB[iter] < LB[iter - 1]) {
warning("Warning: Lower bound decreases!\n")
}
# Check for convergence
if (abs(LB[iter] - LB[iter - 1]) < epsilon_conv) {
break
}
# Show VB difference
if (is_verbose) {
if (i %% 50 == 0) {
message("\r","It:\t",i,"\tLB:\t",LB[iter],"\tDiff:\t",
LB[iter] - LB[iter - 1],"\n")
}
}
}
# Check if VB converged in the given maximum iterations
if (i == vb_max_iter) {
warning("VB did not converge!\n")
}
if (is_verbose) {
utils::setTxtProgressBar(pb, i)
}
}
if (is_verbose) {
close(pb)
}
# Store the object
obj <- structure(list(W = m_k, W_Sigma = S_k, r_nk = r_nk, delta = delta_k,
alpha = alpha_k, beta = beta_k, basis = basis,
pi_k = pi_k, lb = LB, delta_0 = delta_0,
alpha_0 = alpha_0, beta_0 = beta_0),
class = "melissa")
return(obj)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.