Nothing
retrieveDataFromESets_CCR <- function(data){
## Merge row annotations and fold changes from different expressionSets
## containing CCR data
## Initialize variables to prevent "no visible binding for global
## variable" NOTE by R CMD check:
Protein_ID <- NULL
## 1. Preparation
expNames<- names(data)
list1=list2=list4=list3=list5=list6=list7=list8=list9=list10=
vector(mode="list", length=length(expNames))
names(list1)=names(list2)=names(list4)=names(list3)=names(list5)=names(list6)=
names(list7)=names(list8)=names(list9)=names(list10) = expNames
## 2. Iterate over all experiments and retrieve data
for (en in expNames){
setTmp <- data[[en]]
## Split annotation data (stored as featureData in the expressionSets) into
## a data frame of curve parameters, model information, fold changes, and
## annotation columns.
fDat <- pData(featureData(setTmp))
fNames <- colnames(fDat)
fcNames <- sampleNames(setTmp)
idsTmp <- featureNames(setTmp)
## Specify column names:
cols1 <- drCurveParamNames(names = TRUE, info = FALSE)
cols2 <- drCurveParamNames(names = FALSE, info = TRUE)
cols3 <- paste(fcNames, "unmodified", sep="_")
cols4 <- paste(fcNames, "median_normalized", sep="_")
cols5 <- paste(fcNames, "transformed", sep="_")
cols10 <- paste(fcNames, "normalized_to_lowest_conc", sep="_")
cols6 <- "plot"
cols9 <- c("compound_effect", "meets_FC_requirement")
cols7 <- setdiff(fNames, c(cols1,cols2, cols3, cols4, cols5, cols6, cols9, cols10))
## Split featureData into separate data frames:
df1 <- subset(fDat, select=cols1)
df2 <- subset(fDat, select=cols2)
df3 <- subset(fDat, select=cols3)
df4 <- subset(fDat, select=cols4)
df5 <- subset(fDat, select=cols5)
df6 <- subset(fDat, select=cols6)
df7 <- subset(fDat, select=cols7)
df9 <- subset(fDat, select=cols9)
df10 <- subset(fDat, select=cols10)
## Data frame with indicators which proteins were identified per experiment:
df8 <- data.frame("protein_identified_in" = rep(TRUE, nrow(setTmp)))
## Append experiment id to all data frame columns to make them unique when
## combined to big experiment-spanning results table:
colnames(df1) <- paste(colnames(df1), en, sep="_")
colnames(df2) <- paste(colnames(df2), en, sep="_")
colnames(df3) <- paste(colnames(df3), en, sep="_")
colnames(df4) <- paste(colnames(df4), en, sep="_")
colnames(df5) <- paste(colnames(df5), en, sep="_")
colnames(df6) <- paste(colnames(df6), en, sep="_")
colnames(df7) <- paste(colnames(df7), en, sep="_")
colnames(df8) <- paste(colnames(df8), en, sep="_")
colnames(df9) <- paste(colnames(df9), en, sep="_")
colnames(df10) <- paste(colnames(df10), en, sep="_")
## Add protein ID column so that the data frames of multiple experiment
## (with different subsets of proteins detected in each experiment) can
## later be merged together in a robust way:
df1 <- data.frame(Protein_ID=idsTmp, df1, stringsAsFactors=FALSE)
df2 <- data.frame(Protein_ID=idsTmp, df2, stringsAsFactors=FALSE)
df3 <- data.frame(Protein_ID=idsTmp, df3, stringsAsFactors=FALSE)
df4 <- data.frame(Protein_ID=idsTmp, df4, stringsAsFactors=FALSE)
df5 <- data.frame(Protein_ID=idsTmp, df5, stringsAsFactors=FALSE)
df6 <- data.frame(Protein_ID=idsTmp, df6, stringsAsFactors=FALSE)
df7 <- data.frame(Protein_ID=idsTmp, df7, stringsAsFactors=FALSE)
df8 <- data.frame(Protein_ID=idsTmp, df8, stringsAsFactors=FALSE)
df9 <- data.frame(Protein_ID=idsTmp, df9, stringsAsFactors=FALSE)
df10 <- data.frame(Protein_ID=idsTmp, df10, stringsAsFactors=FALSE)
## Store data frames of each experiment in a list. This will enable
## easy and robust merging using plyr::join_all.
list1[[en]] <- df1
list2[[en]] <- df2
list3[[en]] <- df3
list4[[en]] <- df4
list5[[en]] <- df5
list6[[en]] <- df6
list7[[en]] <- df7
list8[[en]] <- df8
list9[[en]] <- df9
list10[[en]] <- df10
}
merged1 <- arrange(join_all(list1, by="Protein_ID", type="full"), Protein_ID)
merged2 <- arrange(join_all(list2, by="Protein_ID", type="full"), Protein_ID)
merged3 <- arrange(join_all(list3, by="Protein_ID", type="full"), Protein_ID)
merged4 <- arrange(join_all(list4, by="Protein_ID", type="full"), Protein_ID)
merged5 <- arrange(join_all(list5, by="Protein_ID", type="full"), Protein_ID)
merged6 <- arrange(join_all(list6, by="Protein_ID", type="full"), Protein_ID)
merged7 <- arrange(join_all(list7, by="Protein_ID", type="full"), Protein_ID)
merged8 <- arrange(join_all(list8, by="Protein_ID", type="full"), Protein_ID)
merged9 <- arrange(join_all(list9, by="Protein_ID", type="full"), Protein_ID)
merged10 <- arrange(join_all(list10, by="Protein_ID", type="full"), Protein_ID)
## Insert FALSE if a protein was not present in an experiment (instead of the
## NAs generated by the join_all function):
for (en in expNames){
name <- paste("protein_identified_in", en, sep="_")
x <- merged8[, name]
x[is.na(x)] <- FALSE
merged8[, name] <- x
}
## Merge plot columns (columns of individual experiments can contain missing
## values if experiment did not provide enough data for plotting):
plotCols <- grep("plot", colnames(merged6), value = TRUE)
if (length(plotCols)>0){
allPlots <- data.frame(
Protein_ID = merged6$Protein_ID,
plot = merge_cols(data = merged6[,plotCols],
fun = paste,
collapse = '|')
)
merged6 <- join(merged6, allPlots, by="Protein_ID")
}
merged6 <- subset(merged6, select = !colnames(merged6) %in% plotCols)
## Return results:
return(list(modelPars = merged1,
modelInfo = merged2,
fcOrig = merged3,
fcRefNorm = merged10,
fcNorm = merged4,
fcTransf = merged5,
plotCol = merged6,
otherAnnotDF = merged7,
presenceDF = merged8,
transfDF = merged9))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.