Nothing
### =========================================================================
### VRanges: Variants in a GRanges
### -------------------------------------------------------------------------
###
### Thoughts on the gVCF format.
## The gVCF format is essentially a run-length encoding of wildtype
## calls. We could represent the run as a range, but we would need
## somewhat to indicate "WT". Probably best to go the VCF route: have
## the first ref base, and an NA alt. We can distinguish this from an
## SNV or indel, because the width of the range is > 1, but there is
## only a single ref base. This will break the assertion that the ref
## length always equal the range width, but that is not a big deal.
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Accessors
###
setMethod("ref", "VRanges", function(x) x@ref)
setReplaceMethod("ref", "VRanges", function(x, value) {
x@ref <- S4Vectors:::recycleVector(value, length(x))
x
})
setMethod("alt", "VRanges", function(x) x@alt)
setReplaceMethod("alt", "VRanges", function(x, value) {
x@alt <- as(.rleRecycleVector(value, length(x)), "characterOrRle")
x
})
setMethod("sampleNames", "VRanges", function(object) object@sampleNames)
setReplaceMethod("sampleNames", "VRanges", function(object, value) {
object@sampleNames <- as(.rleRecycleVector(value, length(object)),
"factorOrRle")
object
})
setMethod("totalDepth", "VRanges", function(x) x@totalDepth)
`totalDepth<-` <- function(x, value) {
x@totalDepth <- as(.rleRecycleVector(value, length(x)), "integerOrRle")
x
}
setMethod("altDepth", "VRanges", function(x) x@altDepth)
`altDepth<-` <- function(x, value) {
x@altDepth <- as(.rleRecycleVector(value, length(x)), "integerOrRle")
x
}
setMethod("refDepth", "VRanges", function(x) x@refDepth)
`refDepth<-` <- function(x, value) {
x@refDepth <- as(.rleRecycleVector(value, length(x)), "integerOrRle")
x
}
setMethod("softFilterMatrix", "VRanges", function(x) x@softFilterMatrix)
setReplaceMethod("softFilterMatrix", "VRanges", function(x, value) {
x@softFilterMatrix <- value
x
})
setMethod("hardFilters", "VRanges", function(x) x@hardFilters)
setReplaceMethod("hardFilters", "VRanges", function(x, value) {
x@hardFilters <- value
x
})
setMethod("called", "VRanges", function(x) {
rowSums(softFilterMatrix(x)) == ncol(softFilterMatrix(x))
})
setMethod("altFraction", "VRanges", function(x) {
altDepth(x) / totalDepth(x)
})
setMethod("refFraction", "VRanges", function(x) {
refDepth(x) / totalDepth(x)
})
setMethod("isDeletion", "VRanges", function(x, ...)
.dispatchSNV_ExpandedVCF(.isDeletion, x)
)
setMethod("isInsertion", "VRanges", function(x, ...)
.dispatchSNV_ExpandedVCF(.isInsertion, x)
)
setMethod("isIndel", "VRanges", function(x, ...)
.dispatchSNV_ExpandedVCF(.isIndel, x)
)
setMethod("isDelins", "VRanges", function(x, ...)
.dispatchSNV_ExpandedVCF(.isDelins, x)
)
setMethod("isSNV", "VRanges", function(x, ...)
.dispatchSNV_ExpandedVCF(.isSNV, x)
)
setMethod("isSubstitution", "VRanges", function(x, ...)
.dispatchSNV_ExpandedVCF(.isSubstitution, x)
)
setMethod("isTransition", "VRanges", function(x, ...)
.dispatchSNV_ExpandedVCF(.isTransition, x)
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Constructor
###
VRanges <-
function(seqnames = Rle(), ranges = IRanges(),
ref = character(), alt = NA_character_,
totalDepth = NA_integer_, refDepth = NA_integer_,
altDepth = NA_integer_, ..., sampleNames = NA_character_,
softFilterMatrix = FilterMatrix(matrix(nrow = length(gr), ncol = 0L),
FilterRules()),
hardFilters = FilterRules())
{
gr <- GRanges(seqnames, ranges,
strand = .rleRecycleVector("*", length(ranges)), ...)
if (length(gr) == 0L && length(ref) == 0L) {
maxLen <- 0L
} else {
maxLen <- max(length(gr), length(ref), length(alt),
length(totalDepth), length(refDepth), length(altDepth),
length(sampleNames), nrow(softFilterMatrix))
}
if (length(gr) != maxLen)
gr <- rep(gr, length.out = maxLen)
ref <- as.character(ref)
ref <- S4Vectors:::recycleVector(ref, maxLen)
alt <- .rleRecycleVector(alt, maxLen)
alt <- as(alt, "characterOrRle")
refDepth <- .rleRecycleVector(refDepth, maxLen)
altDepth <- .rleRecycleVector(altDepth, maxLen)
totalDepth <- .rleRecycleVector(totalDepth, maxLen)
softFilterMatrix <- as.matrix(softFilterMatrix)
storage.mode(softFilterMatrix) <- "logical"
softFilterMatrix.ind <-
S4Vectors:::recycleVector(seq_len(nrow(softFilterMatrix)), maxLen)
softFilterMatrix <- softFilterMatrix[softFilterMatrix.ind,,drop=FALSE]
sampleNames <- .rleRecycleVector(sampleNames, maxLen)
totalDepth <- as(totalDepth, "integerOrRle")
refDepth <- as(refDepth, "integerOrRle")
altDepth <- as(altDepth, "integerOrRle")
if (any(naToZero(refDepth) + naToZero(altDepth) > totalDepth, na.rm = TRUE))
warning("'refDepth' + 'altDepth' exceeds 'totalDepth'; using GATK?")
new("VRanges", gr, ref = ref, alt = alt,
totalDepth = totalDepth,
refDepth = refDepth,
altDepth = altDepth,
softFilterMatrix = softFilterMatrix,
sampleNames = as(sampleNames, "factorOrRle"),
hardFilters = hardFilters)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Coercion
###
setMethod("relistToClass", "VRanges", function(x) "CompressedVRangesList")
parseFilterStrings <- function(x) {
x[x == "."] <- NA
if (all(x == "PASS", na.rm=TRUE))
return(FilterMatrix(matrix(nrow = length(x), ncol = 0L), FilterRules()))
filterSplit <- strsplit(x, ";", fixed=TRUE)
filters <- unlist(filterSplit)
filterNames <- setdiff(unique(filters[!is.na(filters)]), "PASS")
filterMat <- matrix(TRUE, length(x), length(filterNames),
dimnames = list(NULL, filterNames))
filterMat[cbind(togroup(PartitioningByWidth(filterSplit)), match(filters, filterNames))] <- FALSE
filterMat[is.na(x),] <- NA
filterMat
}
genoToMCol <- function(x) {
if (length(dim(x)) == 3) {
I(matrix(x, nrow(x) * max(ncol(x), 1L), dim(x)[3]))
} else {
if (ncol(x) == 0L) {
if (is.list(x)) {
x <- as.logical(x)
}
x <- Rle(x[NA], nrow(x))
} else {
dim(x) <- NULL
if (is.list(x))
x <- as(x, "List")
x
}
}
}
setAs("VCF", "VRanges", function(from) {
from <- expand(from)
rd <- rowRanges(from)
seqnames <- seqnames(rd)
ranges <- ranges(rd)
ref <- rd$REF
alt <- rd$ALT
if (is(alt, "DNAStringSetList") || is(alt, "CharacterList"))
alt <- unlist(alt)
alt <- as.character(alt)
alt[!nzchar(alt)] <- NA
alt[alt == "."] <- NA
ad <- geno(from)$AD
dp4 <- info(from)$DP4
refDepth <- NA_integer_
altDepth <- NA_integer_
if (is.array(ad) && ncol(from) > 0L) {
if (length(dim(ad)) == 3L) {
refDepth <- ad[,,1,drop=FALSE]
altDepth <- ad[,,2,drop=FALSE]
} else if (length(dim(ad)) == 2L) {
RD <- geno(from)$RD
if (is.matrix(RD)) {
refDepth <- RD
}
altDepth <- ad
}
} else {
if (is(dp4, "List") && info(header(from))["DP4","Number"] == "4") {
dp4 <- as.matrix(dp4)
}
if (is.matrix(dp4) && ncol(dp4) == 4L) {
refDepth <- dp4[,1,drop=FALSE] + dp4[,2,drop=FALSE]
altDepth <- dp4[,3,drop=FALSE] + dp4[,4,drop=FALSE]
}
}
totalDepth <- geno(from)$DP
if (is.null(totalDepth) || ncol(from) == 0L)
totalDepth <- NA_integer_
nsamp <- ncol(from)
if (ncol(from) > 0L) {
if (!is.null(colnames(from))) {
sampleNames <- Rle(colnames(from), rep(nrow(from), nsamp))
} else {
sampleNames <- as.character(seq_len(ncol(from)))
}
} else sampleNames <- NA_character_
meta <- info(from)
if (!is.null(mcols(rd)$QUAL)) {
meta <- cbind(mcols(rd)["QUAL"], meta)
}
if (is.integer(meta$END)) {
end(ranges)[!is.na(meta$END)] <- pmax(start(ranges)[!is.na(meta$END)],
meta$END[!is.na(meta$END)])
meta$END <- NULL
}
rownames(meta) <- NULL
if (!is.null(rd$FILTER))
filter <- parseFilterStrings(rd$FILTER)
else filter <- FilterMatrix(matrix(nrow = nrow(from), ncol = 0L),
FilterRules())
if (nsamp > 1L) {
meta <- meta[rep(seq_len(nrow(meta)), nsamp),,drop=FALSE]
filter <- filter[rep(seq_len(nrow(filter)), nsamp),,drop=FALSE]
seqnames <- rep(seqnames, nsamp)
ranges <- rep(ranges, nsamp)
alt <- rep(alt, nsamp)
ref <- rep(ref, nsamp)
} else if (nsamp == 0L && !is.null(meta$DP)) {
totalDepth <- meta$DP
meta$DP <- NULL
}
if (!is.null(geno(from)[["FT"]]))
filter <- cbind(filter, parseFilterStrings(as.vector(geno(from)[["FT"]])))
otherGeno <- geno(from)[setdiff(names(geno(from)), c("AD", "DP", "FT"))]
if (length(otherGeno) > 0L)
meta <- DataFrame(meta, lapply(otherGeno, genoToMCol))
vr <- VRanges(seqnames, ranges, ref, alt,
totalDepth, refDepth, altDepth,
hardFilters = FilterRules(), sampleNames = sampleNames,
softFilterMatrix = filter, meta)
seqinfo(vr) <- seqinfo(from)
vr
})
setAs("VRanges", "VCF", function(from) {
asVCF(from)
})
optionalDescriptions <- c(
GT = "Genotype",
GQ = "Genotype quality",
PL = "Normalized, Phred-scaled likelihoods for genotypes",
MIN_DP = "Minimum DP observed within the gVCF block",
END = "End position of the gVCF WT run"
)
makeFORMATheader <- function(x) {
fixed <-
DataFrame(row.names = c("AD", "DP", "FT"),
Number = c(2L, 1L, 1L),
Type = c("Integer", "Integer", "String"),
Description =
c("Allelic depths (number of reads in each observed allele)",
"Total read depth", "Variant filters"))
df <- rbind(fixed, makeINFOheader(x))
df$Type[df$Type == "Flag"] <- "Integer" # Flags not allowed in FORMAT
df
}
makeINFOheader <- function(x) {
df <- mcols(x)
if (is.null(df))
df <- new("DataFrame", nrows = length(x))
rownames(df) <- names(x)
numberForColumn <- function(xi) {
if (length(dim(xi)) == 2)
ncol(xi)
else if (is.list(xi) || is(xi, "List"))
"."
else 1L
}
typeForColumn <- function(xi) {
if (is.integer(xi))
"Integer"
else if (is.numeric(xi))
"Float"
else if (is.logical(xi))
"Flag"
else if (is.character(xi) || is.factor(xi)) {
if (all(nchar(as.character(xi)) == 1L, na.rm=TRUE))
"Character"
else "String"
}
}
df$Number <- as.character(lapply(x, numberForColumn))
df$Type <- as.character(lapply(x, typeForColumn))
if (is.null(df$Description))
df$Description <- optionalDescriptions[rownames(df)]
df[c("Number", "Type", "Description")]
}
makeFILTERheader <- function(x) {
mat <- softFilterMatrix(x)
if (is(mat, "FilterMatrix"))
rules <- filterRules(mat)
else rules <- FilterRules()
df <- mcols(rules)
if (is.null(df)) {
df <- new("DataFrame", nrows = length(rules))
}
if (is.null(df$Description)) {
exprs <- as.logical(lapply(rules, is.expression))
df <- df[exprs,]
df$Description <- as.character(lapply(rules[exprs], function(expr) {
gsub("\"", "\\\"", gsub("\\", "\\\\", deparse(expr[[1]]), fixed=TRUE),
fixed=TRUE)
}))
}
rownames(df) <- names(rules[exprs])
df
}
## If a row contains a FALSE, all FALSE filters are listed;
## otherwise, if a row contains an NA or it is empty, the result is
## NA (.), otherwise PASS.
makeFILTERstrings <- function(x) {
failed <- which(!x)
ftNames <- as.character(colnames(x)[col(x)][failed])
ftStrings <- rep(NA_character_, nrow(x))
passedRows <- rowSums(x) > 0L
failedRows <- rowSums(!x, na.rm=TRUE) > 0L
ftStrings[passedRows & !failedRows] <- "PASS"
ftStrings[failedRows] <-
unstrsplit(splitAsList(ftNames, row(x)[failed]), ";")
ftStrings
}
isGVCFRun <- function(x) {
nchar(ref(x)) == 1L & width(x) > 1L
}
gVCFRunEnds <- function(x) {
ifelse(isGVCFRun(x), end(x), NA_integer_)
}
vranges2Vcf <- function(x, info = character(), filter = character(),
meta = character())
{
if (!is.character(info) || any(is.na(info)) ||
any(!info %in% colnames(mcols(x))))
stop("'info' must be a character vector naming the mcols to include",
" in the INFO column of the VCF file; the rest become FORMAT fields.")
if (!is.character(filter) || any(is.na(filter)) ||
any(!filter %in% colnames(softFilterMatrix(x))))
stop("'filter' must be a character vector naming the filters to include",
" in the FILTER column of the VCF file; the rest are encoded as the FT",
" FORMAT field.")
if (!is.character(meta) || any(is.na(meta)) ||
any(!meta %in% names(metadata(x))))
stop("'meta' must be a character vector naming metadata(x) elements",
" to include as metadata in the VCF header.")
metaStrings <- as.character(sapply(metadata(x)[meta], as.character))
if (any(elementNROWS(metaStrings) != 1L))
stop("The elements named in 'meta' must be of length 1")
if (any(is.na(sampleNames(x)))) {
stop("sampleNames(x) must not contain missing values (for VCF export)")
}
sampleLevels <- levels(sampleNames(x))
if (length(sampleLevels) > 1) {
xUniq <- unique(x)
} else {
xUniq <- x
}
END <- gVCFRunEnds(xUniq)
if (!all(is.na(END))) {
if (!is.null(xUniq$END)) {
warning("Replacing 'END' metadata/info column with computed gVCF END")
}
xUniq$END <- END
info <- union(info, "END")
}
rowRanges <- xUniq
mcols(rowRanges) <- NULL
rowRanges <- as(rowRanges, "GRanges", strict=TRUE)
colData <- DataFrame(Samples = seq_along(sampleLevels),
row.names = sampleLevels)
meta_vector <- c(fileformat = "VCFv4.1",
source = paste("VariantAnnotation",
packageVersion("VariantAnnotation")),
phasing = "unphased",
metaStrings)
nms <- names(meta_vector)
meta_df <- DataFrame(Value = meta_vector, row.names = nms)
meta_header <- as(splitAsList(meta_df, nms), "SimpleDataFrameList")
genoMCols <- setdiff(names(mcols(x)), info)
header <- VCFHeader(reference = seqlevels(x), samples = sampleLevels,
header = c(meta_header,
DataFrameList(
FORMAT = makeFORMATheader(mcols(x)[genoMCols]),
INFO = makeINFOheader(mcols(xUniq)[info]),
FILTER = makeFILTERheader(x))
))
metadata <- list(header = header)
alt <- as.character(alt(xUniq))
qual <- xUniq$QUAL
if (is.null(qual) || !is.numeric(qual))
qual <- rep.int(NA_real_, length(xUniq))
filtMat <- softFilterMatrix(xUniq)
if (ncol(filtMat) > 0L)
filtMat <- filtMat[,filter,drop=FALSE]
filterStrings <- makeFILTERstrings(filtMat)
fixed <- DataFrame(REF = DNAStringSet(ref(xUniq)),
ALT = alt,
QUAL = qual,
FILTER = filterStrings)
if (length(sampleLevels) > 1) {
samplesToUniq <- tapply(x, sampleNames(x), function(xi) {
match(xi, xUniq)
}, simplify=FALSE)
}
genoArray <- function(v) {
v <- as.vector(v) # handles e.g. Rle
if (is.logical(v)) {
v <- as.integer(v)
}
width <- length(v)/length(x)
if (width > 1L) {
v <- matrix(v, nrow=length(x), ncol=width)
}
if (length(sampleLevels) > 1L) {
sample.ord <- order(sampleNames(x))
if (is.matrix(v)) {
v <- v[sample.ord,,drop=FALSE]
} else {
v <- v[sample.ord]
}
ind <- unlist(samplesToUniq, use.names=FALSE) +
(togroup(PartitioningByWidth(samplesToUniq))-1L)*length(xUniq)
a <- matrix(NA_integer_, nrow=length(xUniq)*length(sampleLevels),
ncol=width)
a[ind,] <- v
} else {
a <- v
}
if (width > 1L) {
array(a, c(length(xUniq), length(sampleLevels), ncol(a)))
} else {
matrix(a, length(xUniq), length(sampleLevels))
}
}
alleleDepth <- c(refDepth(x), altDepth(x))
filtMat <- softFilterMatrix(x)
if (ncol(filtMat) > 0L)
filtMat <- filtMat[,setdiff(colnames(filtMat), filter), drop=FALSE]
ftStrings <- makeFILTERstrings(filtMat)
geno <-
SimpleList(AD = genoArray(alleleDepth),
DP = genoArray(totalDepth(x)),
FT = genoArray(ftStrings))
if (length(genoMCols) > 0L)
geno <- c(geno, SimpleList(lapply(mcols(x)[genoMCols], genoArray)))
info <- mcols(xUniq)[info]
VCF(rowRanges = rowRanges, colData = colData, metadata = metadata,
fixed = fixed, geno = geno, info = info, collapsed = FALSE)
}
setMethod("asVCF", "VRanges", vranges2Vcf)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Reading from VCF
###
VRangesScanVcfParam <- function(fixed="ALT", info=NA, geno="AD", ...) {
.Defunct("ScanVcfParam")
}
readVcfAsVRanges <- function(x, genome, param=ScanVcfParam(),
use.names=FALSE, ...)
{
if (!isTRUEorFALSE(use.names)) {
stop("'use.names' must be TRUE or FALSE")
}
as(readVcf(x, genome, param=param, row.names=use.names, ...), "VRanges")
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Writing to VCF (see methods-writeVcf.R)
###
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### gVCF support
###
addTotalDepthRuns <- function(x, runs, genome) {
mins <- viewMins(runs)
gr <- as(ranges(runs), "GRanges")
ref <- getSeq(genome, resize(gr, 1L))
vr <- VRanges(seqnames(gr), ranges, ref, alt, totalDepth=mins)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Filtering
###
softFilter <- function(x, filters, ...) {
softFilterMatrix(x) <-
cbind(softFilterMatrix(x),
FilterMatrix(matrix = evalSeparately(filters, x, ...),
filterRules = filters))
x
}
resetFilter <- function(x) {
softFilterMatrix(x) <- FilterMatrix(matrix(nrow = length(x), ncol = 0L),
filterRules = FilterRules())
x
}
setMethod("subsetByFilter", c("VRanges", "FilterRules"), function(x, filter) {
ans <- callNextMethod(x, filter)
hardFilters(ans) <- c(hardFilters(ans), filter)
ans
})
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Utilities
###
setMethod("duplicated", "VRanges",
function (x, incomparables = FALSE, fromLast = FALSE,
method = c("auto", "quick", "hash"))
{
if (!identical(incomparables, FALSE))
stop("\"duplicated\" method for VRanges objects ",
"only accepts 'incomparables=FALSE'")
duplicatedIntegerQuads(as.factor(seqnames(x)),
as.factor(alt(x)),
start(x), width(x),
fromLast = fromLast,
method = method)
})
setMethod("match", c("VRanges", "VRanges"),
function(x, table, nomatch = NA_integer_, incomparables = NULL,
method = c("auto", "quick", "hash"))
{
if (!isSingleNumberOrNA(nomatch))
stop("'nomatch' must be a single number or NA")
if (!is.integer(nomatch))
nomatch <- as.integer(nomatch)
if (!is.null(incomparables))
stop("\"match\" method for VRanges objects ",
"only accepts 'incomparables=NULL'")
merge(seqinfo(x), seqinfo(table))
altLevels <- as.character(union(alt(x), alt(table)))
x_seqnames <- GenomicRanges:::relevelSeqnamesForMatch(x, table)
matchIntegerQuads(x_seqnames, factor(as.character(alt(x)),
altLevels),
start(x), width(x),
as.factor(seqnames(table)),
factor(as.character(alt(table)),
altLevels),
start(table), width(table),
nomatch = nomatch, method = method)
})
setMethod("%in%", c("VRanges", "TabixFile"),
function(x, table)
{
table <- readVcfAsVRanges(table, genome=genome(x), param=x)
x %in% table
})
setMethod("tabulate", "VRanges", function(bin, nbins) {
if (!missing(nbins))
stop("'nbins' argument not relevant")
m <- match(bin, bin)
## for dupes, 'm' always points to the subject with the lowest index
tab <- tabulate(m, length(bin))
ans <- bin[tab > 0]
ans$sample.count <- tab[tab > 0]
ans
})
setMethod("merge", c("VRanges", "VRanges"), function(x, y, ...) {
### FIXME: support softFilterMatrix
xdf <- as.data.frame(x)
ydf <- as.data.frame(y)
bothAllNA <- function(nm) all(is.na(slot(x, nm))) && all(is.na(slot(y, nm)))
ignore.cols <- Filter(bothAllNA, c("refDepth", "altDepth", "totalDepth"))
ignore.cols <- c(ignore.cols, c("width", "strand"))
xdf <- xdf[setdiff(colnames(xdf), ignore.cols)]
ydf <- ydf[setdiff(colnames(ydf), ignore.cols)]
by <- c("seqnames", "start", "end", "ref", "alt", "sampleNames")
merged <- merge(xdf, ydf, by = by, ...)
with(merged, VRanges(seqnames, IRanges(start, end), ref, alt, NA, NA, NA,
sampleNames = sampleNames,
merged[setdiff(colnames(merged), by)]))
})
setMethod("liftOver", c("VRanges", "Chain"), function(x, chain, ...) {
grl <- liftOver(GRanges(seqnames(x), ranges(x)), chain, ...)
gr <- unlist(grl, use.names=FALSE)
ans <- x[togroup(PartitioningByWidth(grl))]
ans <- update(ans, seqinfo = seqinfo(gr), seqnames = seqnames(gr),
ranges = ranges(gr))
relist(ans, grl)
})
pileupGRanges <- function(x) {
x <- x[!isIndel(x)]
gr <- GRanges(seqnames(x), ranges(x), strand(x))
sm <- selfmatch(gr)
uniq <- sm == seq_len(length(gr))
map <- integer()
map[sm[uniq]] <- seq_len(sum(uniq))
pos <- map[sm]
base <- match(c(alt(x), ref(x)), DNA_BASES)
depth <- c(altDepth(x), refDepth(x))
samp <- as.factor(sampleNames(x))
pileup <- array(0L, c(sum(uniq), length(levels(samp)), length(DNA_BASES)),
dimnames=list(NULL, levels(samp), base=DNA_BASES))
pileup[cbind(pos, samp, base)[!is.na(base),]] <- depth[!is.na(base)]
ugr <- gr[uniq]
ugr$ref[pos] <- ref(x)
ugr$pileup <- pileup
ugr
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Show
###
.showHardFilters <- function(object) {
cat(S4Vectors:::labeledLine(" hardFilters", names(hardFilters(object))))
}
setMethod("show", "VRanges", function(object) {
callNextMethod()
.showHardFilters(object)
})
setMethod(GenomicRanges:::extraColumnSlotNames, "VRanges",
function(x) {
c("ref", "alt", "totalDepth", "refDepth", "altDepth",
"sampleNames", "softFilterMatrix")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.