Description Usage Arguments Value Author(s) See Also Examples
This function performs a statistical comparison of the correlation coefficients as computed between each probe and prototype.
1 2 | compareProtoCor(gene.cor, proto.cor, nn,
p.adjust.m = c("none", "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr"))
|
gene.cor |
Correlation coefficients between the probes and each of the prototypes. |
proto.cor |
Pairwise correlation coefficients of the prototypes. |
nn |
Number of samples used to compute the correlation coefficients between the probes and each of the prototypes. |
p.adjust.m |
Correction method as defined in |
Data frame with probes in rows and with three columns: "proto" is the prototype to which the probe is the most correlated, "cor" is the actual correlation, and "signif" is the (corrected) p-value for the superiority of the correlation to this prototype compared to the second highest correlation.
Benjamin Haibe-Kains
compute.proto.cor.meta
, compute.pairw.cor.meta
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ## load VDX dataset
data(vdxs)
## load NKI dataset
data(nkis)
## reduce datasets
ginter <- intersect(annot.vdxs[ ,"EntrezGene.ID"], annot.nkis[ ,"EntrezGene.ID"])
ginter <- ginter[!is.na(ginter)][1:30]
myx <- unique(c(match(ginter, annot.vdxs[ ,"EntrezGene.ID"]),
sample(x=1:nrow(annot.vdxs), size=20)))
data2.vdxs <- data.vdxs[ ,myx]
annot2.vdxs <- annot.vdxs[myx, ]
myx <- unique(c(match(ginter, annot.nkis[ ,"EntrezGene.ID"]),
sample(x=1:nrow(annot.nkis), size=20)))
data2.nkis <- data.nkis[ ,myx]
annot2.nkis <- annot.nkis[myx, ]
## mapping of datasets
datas <- list("VDX"=data2.vdxs,"NKI"=data2.nkis)
annots <- list("VDX"=annot2.vdxs, "NKI"=annot2.nkis)
datas.mapped <- map.datasets(datas=datas, annots=annots, do.mapping=TRUE)
## define some prototypes
protos <- paste("geneid", ginter[1:3], sep=".")
## compute meta-estimate of correlation coefficients to the three prototype genes
probecor <- compute.proto.cor.meta(datas=datas.mapped$datas, proto=protos,
method="pearson")
## compute meta-estimate of pairwise correlation coefficients between prototypes
datas.proto <- lapply(X=datas.mapped$datas, FUN=function(x, p) {
return(x[ ,p,drop=FALSE]) }, p=protos)
protocor <- compute.pairw.cor.meta(datas=datas.proto, method="pearson")
## compare correlation coefficients to each prototype
res <- compareProtoCor(gene.cor=probecor$cor, proto.cor=protocor$cor,
nn=probecor$cor.n, p.adjust.m="fdr")
head(res)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.