Description Usage Arguments Value Author(s) References Examples
This function computes the prediction strength of a clustering model as published in R. Tibshirani and G. Walther 2005.
1 | ps.cluster(cl.tr, cl.ts, na.rm = FALSE)
|
cl.tr |
Clusters membership as defined by the original clustering model, i.e. the one that was not fitted on the dataset of interest. |
cl.ts |
Clusters membership as defined by the clustering model fitted on the dataset of interest. |
na.rm |
|
ps |
the overall prediction strength (minimum of the prediction strengths at cluster level). |
ps.cluster |
Prediction strength for each cluster |
ps.individual |
Prediction strength for each sample. |
Benjamin Haibe-Kains
R. Tibshirani and G. Walther (2005) "Cluster Validation by Prediction Strength", Journal of Computational and Graphical Statistics, 14(3):511–528.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## load SSP signature published in Sorlie et al. 2003
data(ssp2003)
## load NKI data
data(nkis)
## SP2003 fitted on NKI
ssp2003.2nkis <- intrinsic.cluster(data=data.nkis, annot=annot.nkis,
do.mapping=TRUE, std="robust",
intrinsicg=ssp2003$centroids.map[ ,c("probe", "EntrezGene.ID")],
number.cluster=5, mins=5, method.cor="spearman",
method.centroids="mean", verbose=TRUE)
## SP2003 published in Sorlie et al 2003 and applied in VDX
ssp2003.nkis <- intrinsic.cluster.predict(sbt.model=ssp2003,
data=data.nkis, annot=annot.nkis, do.mapping=TRUE, verbose=TRUE)
## prediction strength of sp2003 clustering model
ps.cluster(cl.tr=ssp2003.2nkis$subtype, cl.ts=ssp2003.nkis$subtype,
na.rm = FALSE)
|
Loading required package: survcomp
Loading required package: survival
Loading required package: prodlim
Loading required package: mclust
Package 'mclust' version 5.4.1
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: limma
Loading required package: biomaRt
Loading required package: iC10
Loading required package: pamr
Loading required package: cluster
Loading required package: iC10TrainingData
Loading required package: AIMS
Loading required package: e1071
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following object is masked from 'package:limma':
plotMA
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, cbind, colMeans, colSums, colnames, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
setdiff, sort, table, tapply, union, unique, unsplit, which,
which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
76/500 probes are used for clustering
robust standardization of the gene expressions
76/500 probes are used for clustering
no standardization of the gene expressions
the labels of the clusters differ
$ps
[1] 0.2683983
$ps.cluster
Basal Her2 LumA LumB Normal
0.8433333 0.7523810 0.6966049 0.2683983 1.0000000
$ps.individual
NKI_123 NKI_327 NKI_291 NKI_370 NKI_178 NKI_176 NKI_102
0.82500000 0.05000000 1.00000000 0.82500000 1.00000000 0.82500000 0.82500000
NKI_110 NKI_124 NKI_305 NKI_28 NKI_308 NKI_221 NKI_146
0.23809524 0.82500000 0.82500000 1.00000000 0.85714286 0.82500000 0.82500000
NKI_126 NKI_315 NKI_174 NKI_288 NKI_368 NKI_249 NKI_130
0.10000000 0.82500000 0.23809524 0.85714286 0.82500000 0.85714286 0.85714286
NKI_331 NKI_182 NKI_142 NKI_113 NKI_114 NKI_333 NKI_72
0.10000000 1.00000000 0.23809524 0.00000000 0.82500000 0.38095238 0.82500000
NKI_246 NKI_158 NKI_231 NKI_165 NKI_346 NKI_129 NKI_238
0.38095238 0.07142857 0.82500000 0.38095238 0.82500000 0.82500000 0.91666667
NKI_133 NKI_261 NKI_285 NKI_307 NKI_339 NKI_336 NKI_141
0.82500000 0.82500000 0.82500000 0.91666667 0.82500000 0.82500000 0.85714286
NKI_361 NKI_17 NKI_2 NKI_19 NKI_292 NKI_354 NKI_311
0.82500000 0.82500000 0.82500000 0.82500000 0.82500000 0.82500000 0.05000000
NKI_91 NKI_394 NKI_44 NKI_57 NKI_321 NKI_226 NKI_260
0.91666667 0.10000000 0.91666667 0.91666667 0.85714286 0.91666667 0.82500000
NKI_264 NKI_13 NKI_80 NKI_186 NKI_243 NKI_254 NKI_252
0.82500000 0.19047619 0.91666667 0.91666667 0.82500000 0.23809524 0.82500000
NKI_397 NKI_300 NKI_257 NKI_26 NKI_272 NKI_366 NKI_236
0.82500000 0.82500000 0.85714286 0.82500000 0.82500000 0.04761905 0.38095238
NKI_106 NKI_330 NKI_293 NKI_345 NKI_356 NKI_375 NKI_170
0.91666667 0.91666667 0.82500000 0.82500000 0.82500000 0.38095238 0.82500000
NKI_29 NKI_45 NKI_41 NKI_294 NKI_377 NKI_355 NKI_6
0.82500000 0.10000000 0.82500000 0.10000000 0.91666667 0.10000000 0.82500000
NKI_273 NKI_103 NKI_161 NKI_269 NKI_209 NKI_169 NKI_150
0.19047619 0.91666667 0.82500000 0.91666667 0.82500000 0.04761905 0.19047619
NKI_334 NKI_301 NKI_325 NKI_364 NKI_215 NKI_282 NKI_374
0.82500000 0.82500000 0.82500000 0.85714286 0.91666667 0.82500000 0.23809524
NKI_220 NKI_99 NKI_274 NKI_128 NKI_403 NKI_181 NKI_208
0.82500000 1.00000000 0.82500000 0.82500000 0.10000000 0.38095238 0.85714286
NKI_111 NKI_229 NKI_306 NKI_344 NKI_309 NKI_159 NKI_195
0.19047619 0.19047619 0.82500000 0.91666667 0.82500000 0.82500000 0.91666667
NKI_136 NKI_56 NKI_116 NKI_256 NKI_287 NKI_109 NKI_144
0.38095238 0.82500000 0.82500000 0.82500000 0.82500000 0.85714286 0.91666667
NKI_4 NKI_23 NKI_24 NKI_105 NKI_69 NKI_43 NKI_164
0.23809524 1.00000000 0.91666667 0.82500000 0.38095238 0.85714286 0.91666667
NKI_119 NKI_210 NKI_34 NKI_277 NKI_192 NKI_93 NKI_217
0.91666667 0.85714286 0.05000000 0.82500000 0.05000000 0.07142857 0.38095238
NKI_283 NKI_278 NKI_75 NKI_227 NKI_322 NKI_268 NKI_118
0.82500000 0.82500000 0.91666667 0.82500000 0.05000000 0.91666667 0.82500000
NKI_177 NKI_284 NKI_371 NKI_275 NKI_54 NKI_235 NKI_337
0.91666667 0.82500000 0.00000000 0.82500000 0.82500000 0.82500000 0.10000000
NKI_37 NKI_360 NKI_189
0.10000000 1.00000000 0.85714286
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.