R/Cb_qcFree.R

ComBat_qcFree <- function (dat, batch, mod = NULL, par.prior = TRUE, prior.plots = FALSE,
                    mean.only = FALSE, ref.batch = NULL) {
  ## make batch a factor and make a set of indicators for batch
  if(mean.only==TRUE){
    message("Using the 'mean only' version of ComBat")
  }
  if(length(dim(batch))>1){
    stop("This version of ComBat only allows one batch variable")
  }  ## to be updated soon!
  batch <- as.factor(batch)
  batchmod <- model.matrix(~-1+batch)  
  if (!is.null(ref.batch)){
    ## check for reference batch, check value, and make appropriate changes
    if (!(ref.batch%in%levels(batch))) {
      stop("reference level ref.batch is not one of the levels of the batch variable")
    }
    cat("Using batch =",ref.batch, "as a reference batch (this batch won't change)\n")
    ref <- which(levels(as.factor(batch))==ref.batch) # find the reference
    batchmod[,ref] <- 1
  } else {
    ref <- NULL
  }
  message("Found", nlevels(batch), "batches")
  
  ## A few other characteristics on the batches
  n.batch <- nlevels(batch)
  batches <- list()
  for (i in 1:n.batch) {
    batches[[i]] <- which(batch == levels(batch)[i])
  } # list of samples in each batch  
  n.batches <- sapply(batches, length)
  if(any(n.batches==1)){
    mean.only=TRUE
    message("Note: one batch has only one sample, setting mean.only=TRUE")
  }
  n.array <- sum(n.batches)
  ## combine batch variable and covariates
  design <- cbind(batchmod,mod)
  
  ## check for intercept in covariates, and drop if present
  check <- apply(design, 2, function(x) all(x == 1))
  if(!is.null(ref)){
    check[ref] <- FALSE
  } ## except don't throw away the reference batch indicator
  design <- as.matrix(design[,!check])
  
  ## Number of covariates or covariate levels
  message("Adjusting for ", ncol(design)-ncol(batchmod), ' covariate(s) or covariate level(s)')
  
  ## Check if the design is confounded
  if(qr(design)$rank < ncol(design)) {
    ## if(ncol(design)<=(n.batch)){stop("Batch variables are redundant! Remove one or more of the batch variables so they are no longer confounded")}
    if(ncol(design)==(n.batch+1)) {
      stop("The covariate is confounded with batch! Remove the covariate and rerun ComBat")
    }
    if(ncol(design)>(n.batch+1)) {
      if((qr(design[,-c(1:n.batch)])$rank<ncol(design[,-c(1:n.batch)]))){
        stop('The covariates are confounded! Please remove one or more of the covariates so the design is not confounded')
      } else {
        stop("At least one covariate is confounded with batch! Please remove confounded covariates and rerun ComBat")
      }
    }
  }
  
  ## Check for missing values
  NAs <- any(is.na(dat))
  if(NAs){
    message(c('Found',sum(is.na(dat)),'Missing Data Values'), sep=' ')}
  ## print(dat[1:2,])
  
  ##Standardize Data across genes
  cat('Standardizing Data across features\n')
  if (!NAs){
    B.hat <- solve(crossprod(design), tcrossprod(t(design), as.matrix(dat)))
  } else { 
    B.hat <- apply(dat, 1, Beta.NA, design) # FIXME
  }
  
  ## change grand.mean for ref batch
  if(!is.null(ref.batch)){
    grand.mean <- t(B.hat[ref, ])
  } else {
    grand.mean <- crossprod(n.batches/n.array, B.hat[1:n.batch,])
  }
  
  ## change var.pooled for ref batch
  if (!NAs){
    if(!is.null(ref.batch)) {
      ref.dat <- dat[, batches[[ref]]]
      var.pooled <- ((ref.dat-t(design[batches[[ref]], ] %*% B.hat))^2) %*% rep(1/n.batches[ref],n.batches[ref]) # FIXME
    } else {
      var.pooled <- ((dat-t(design %*% B.hat))^2) %*% rep(1/n.array,n.array) # FIXME
    }
  } else {
    if(!is.null(ref.batch)) {
      ref.dat <- dat[, batches[[ref]]]
      var.pooled <- rowVars(ref.dat-t(design[batches[[ref]], ]%*%B.hat), na.rm=TRUE)
    } else {
      var.pooled <- rowVars(dat-t(design %*% B.hat), na.rm=TRUE)
    }
  }
  
  stand.mean <- t(grand.mean) %*% t(rep(1,n.array)) # FIXME
  if(!is.null(design)){
    tmp <- design
    tmp[,c(1:n.batch)] <- 0
    stand.mean <- stand.mean+t(tmp %*% B.hat) #FIXME
  }  
  s.data <- (dat-stand.mean)/(sqrt(var.pooled) %*% t(rep(1,n.array))) # FIXME
  
  ##Get regression batch effect parameters
  message("Fitting L/S model and finding priors")
  batch.design <- design[, 1:n.batch]
  if (!NAs){
    gamma.hat <- solve(crossprod(batch.design), tcrossprod(t(batch.design),
                                                           as.matrix(s.data)))
  } else{
    gamma.hat <- apply(s.data, 1, Beta.NA, batch.design) # FIXME
  }
  delta.hat <- NULL
  for (i in batches){
    if(mean.only==TRUE) {
      delta.hat <- rbind(delta.hat,rep(1,nrow(s.data))) 
    } else {
      delta.hat <- rbind(delta.hat, rowVars(s.data[,i], na.rm=TRUE))
    }
  }
  
  ##Find Priors
  gamma.bar <- rowMeans(gamma.hat)
  t2 <- rowVars(gamma.hat)
  a.prior <- apply(delta.hat, 1, aprior) # FIXME 
  b.prior <- apply(delta.hat, 1, bprior) # FIXME
  
  ## Plot empirical and parametric priors
  
  if (prior.plots && par.prior) {
    par(mfrow=c(1,2))
    
    ## Top left
    tmp <- density(gamma.hat[1,])
    plot(tmp,  type='l', main=expression(paste("Density Plot of First Batch ",  hat(gamma))))
    xx <- seq(min(tmp$x), max(tmp$x), length=100)
    lines(xx,dnorm(xx,gamma.bar[1],sqrt(t2[1])), col=2)
    
    ## Top Right
    qqnorm(gamma.hat[1,], main=expression(paste("Normal Q-Q Plot of First Batch ", hat(gamma))))
    qqline(gamma.hat[1,], col=2)
    
    ## Bottom Left
    #tmp <- density(delta.hat[1,])
    #xx <- seq(min(tmp$x), max(tmp$x), length=100)
    #tmp1 <- list(x=xx, y=dinvgamma(xx, a.prior[1], b.prior[1]))
    #plot(tmp, typ="l", ylim=c(0, max(tmp$y, tmp1$y)),
    #     main=expression(paste("Density Plot of First Batch ", hat(delta))))
    #lines(tmp1, col=2)
    
    ## Bottom Right
    #invgam <- 1/qgamma(1-ppoints(ncol(delta.hat)), a.prior[1], b.prior[1])
    #qqplot(invgam, delta.hat[1,],
    #       main=expression(paste("Inverse Gamma Q-Q Plot of First Batch ", hat(delta))),
    #       ylab="Sample Quantiles", xlab="Theoretical Quantiles")
    #lines(c(0, max(invgam)), c(0, max(invgam)), col=2)
  }
  
  ## Find EB batch adjustments
  
  gamma.star <- delta.star <- matrix(NA, nrow=n.batch, ncol=nrow(s.data))
  if (par.prior) {
    message("Finding parametric adjustments")
    results <- lapply(1:n.batch, function(i) {
      if (mean.only) {
        gamma.star <- postmean(gamma.hat[i,], gamma.bar[i], 1, 1, t2[i])
        delta.star <- rep(1, nrow(s.data))
      }
      else {
        temp <- it.sol(s.data[, batches[[i]]], gamma.hat[i, ],
                       delta.hat[i, ], gamma.bar[i], t2[i], a.prior[i],
                       b.prior[i])
        gamma.star <- temp[1, ]
        delta.star <- temp[2, ]
      }
      list(gamma.star=gamma.star, delta.star=delta.star)
    })
    for (i in 1:n.batch) {
      gamma.star[i,] <- results[[i]]$gamma.star
      delta.star[i,] <- results[[i]]$delta.star
    }
  }
  else {
    message("Finding nonparametric adjustments")
    results <- lapply(1:n.batch, function(i) {
      if (mean.only) {
        delta.hat[i, ] = 1
      }
      temp <- int.eprior(as.matrix(s.data[, batches[[i]]]),
                         gamma.hat[i, ], delta.hat[i, ])
      list(gamma.star=temp[1,], delta.star=temp[2,])
    })
    for (i in 1:n.batch) {
      gamma.star[i,] <- results[[i]]$gamma.star
      delta.star[i,] <- results[[i]]$delta.star
    }
  }
  
  if(!is.null(ref.batch)){
    gamma.star[ref,] <- 0  ## set reference batch mean equal to 0
    delta.star[ref,] <- 1  ## set reference batch variance equal to 1
  }
  
  ## Normalize the Data ###
  message("Adjusting the Data\n")
  
  bayesdata <- s.data
  j <- 1
  for (i in batches){
    bayesdata[,i] <- (bayesdata[,i]-t(batch.design[i,]%*%gamma.star))/(sqrt(delta.star[j,])%*%t(rep(1,n.batches[j]))) # FIXME
    j <- j+1
  }
  
  bayesdata <- (bayesdata*(sqrt(var.pooled)%*%t(rep(1,n.array))))+stand.mean # FIXME
  
  ## tiny change still exist when tested on bladder data
  ## total sum of change within each batch around 1e-15 
  ## (could be computational system error).  
  ## Do not change ref batch at all in reference version
  if(!is.null(ref.batch)){
    bayesdata[, batches[[ref]]] <- dat[, batches[[ref]]]
  }
  
  return(bayesdata)
}

Try the statTarget package in your browser

Any scripts or data that you put into this service are public.

statTarget documentation built on Nov. 8, 2020, 8:27 p.m.