Description Usage Arguments Value Examples
A wrapper function for autoSPIN method which implements optimized local refinement using the selected SPIN sorting method, i.e. STS or Neighborhood.
1 2 3 4 |
data |
An log2 transformed expresssion matrix containing n-rows of cells and m-cols of genes. |
data_type |
A character string indicating the type of progression, i.e. 'linear' (strictly linear) or 'cyclical' (cyclically linear). |
sorting_method |
A character string indicating the choice of SPIN sorting method, i.e. 'STS' (Side-to-Side) or 'Neighborhood'. |
alpha |
A fraction value denoting the size of locality used for calculating the summed local variance. |
sigma_width |
An integer number denoting the degree of spread of the gaussian distribution which is used for computing weight matrix for Neighborhood sorting method. |
no_randomization |
An integer number indicating the number of repeated sorting, each of which uses randomly selected initial cell position. |
window_perc_range |
A fraction value indicating the range of window size to be examined during local refinement. |
window_size_incre_perct |
A fraction value indicating the step size at each iteration for incrementing window size. |
A data frame containing single column of ordered sample IDs.
1 2 3 4 5 6 7 8 9 | set.seed(15)
da <- iris[sample(150, 150, replace = FALSE), ]
rownames(da) <- paste0('spl_',seq(1,nrow(da)))
d <- da[,1:4]
dl <- da[,5,drop=FALSE]
res <- autoSPIN(data = d)
dl <- dl[match(res$SampleID,rownames(dl)),]
annot <- data.frame(id = seq(1,nrow(res)), label=dl, stringsAsFactors = FALSE)
#ggplot(annot, aes(x=id, y=id, colour = label)) + geom_point() + theme_bw()
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.