R/meta-ttest-utility.R

Defines functions meta.bf.interval_approx meta.t.Metrop meta.bf.interval meta.t.bf meta.ttest.tstat makeMetaTtestHypothesisNames

makeMetaTtestHypothesisNames = function(rscale, nullInterval=NULL){
  if(is.null(nullInterval)){
    shortName = paste("Alt., r=",round(rscale,3),sep="")
    longName = paste("Alternative, r = ",rscale,", delta =/= 0", sep="")
  }else{
    if(!is.null(attr(nullInterval,"complement"))){
      shortName = paste("Alt., r=",round(rscale,3)," !(",nullInterval[1],"<d<",nullInterval[2],")",sep="")
      longName = paste("Alternative, r = ",rscale,", delta =/= 0 !(",nullInterval[1],"<d<",nullInterval[2],")",sep="")
    }else{
      shortName = paste("Alt., r=",round(rscale,3)," ",nullInterval[1],"<d<",nullInterval[2],sep="")
      longName = paste("Alternative, r = ",rscale,", delta =/= 0 ",nullInterval[1],"<d<",nullInterval[2],sep="")
    }
  }
  return(list(shortName=shortName,longName=longName))
}


meta.ttest.tstat <- function(t,n1,n2=NULL,nullInterval=NULL,rscale, complement = FALSE)
{

  if( ((length(n1) != length(n2)) & !is.null(n2)) | (length(n1) != length(t))){
    stop("Number of t statistics must equal number of sample sizes.")
  }
  if(!is.null(n2)){
    rscale = rpriorValues("ttestTwo",,rscale)
  }else{
    rscale = rpriorValues("ttestOne",,rscale)
  }
  if(is.null(n2)){
    nu = n1 - 1
    n <- n1
  }else{
    nu = n1 + n2 - 2
    n <- n1 * n2 / (n1 + n2)
  }

  if( any(n < 1) | any(nu < 1))
    stop("Insufficient sample size for t analysis.")

  if(any(is.infinite(t)))
    stop("At least one t statistic is infinite.")

  if(is.null(nullInterval)){
    return(meta.t.bf(t,n,nu,rscale=rscale))
  }else{
    return(meta.t.bf(t,n,nu,interval=nullInterval,rscale=rscale, complement = complement))
  }
}


meta.t.bf <- function(t,N,df,interval=NULL,rscale, complement = FALSE){
  if(length(interval)!=2 & !is.null(interval))
    stop("argument interval must have two elements.")

  if(is.null(interval)){
    return(meta.bf.interval(-Inf,Inf,t,N,df,rscale))
  }

  interval = range(interval)

  if(interval[1]==-Inf & interval[2]==Inf){
    if(complement){
     return(list(bf=NA,properror=NA,method=NA))
    }else{
      return(meta.bf.interval(-Inf,Inf,t,N,df,rscale))
    }
  }
  
  if(any(is.infinite(interval))){
    if(!complement){
      bf = meta.bf.interval(interval[1],interval[2],t,N,df,rscale)
    }else{
      if( ( interval[1]==-Inf ) ){
        bf.compl = meta.bf.interval(interval[2],Inf,t,N,df,rscale)
      }else{
        bf.compl = meta.bf.interval(-Inf,interval[1],t,N,df,rscale)
      }
    }
  }else{
    logPriorProbs = pcauchy(c(-Inf,interval,Inf),scale=rscale,log.p=TRUE)
    prior.interval1 = logExpXminusExpY(logPriorProbs[2], logPriorProbs[1])
    prior.interval3 = logExpXminusExpY(logPriorProbs[4], logPriorProbs[3])

    prior.interval.1.3 = logExpXplusExpY(prior.interval1,prior.interval3)

    bf1 = meta.bf.interval(-Inf,interval[1],t,N,df,rscale)
    bf = meta.bf.interval(interval[1],interval[2],t,N,df,rscale)
    bf3 = meta.bf.interval(interval[2],Inf,t,N,df,rscale)

    if(complement){
      bf.compl = sumWithPropErr(bf1[['bf']] + prior.interval1,
                              bf3[['bf']] + prior.interval3,
                              bf1[['properror']],
                              bf3[['properror']])
      bf.compl[1] = bf.compl[1] - prior.interval.1.3
    }
  }

  if(complement){
    return(
      list(
        bf = bf.compl[[1]],
        properror = bf.compl[[2]],
        method = "Savage-Dickey t approximation"
      ))
  }else{
    return(
      list(
        bf = bf[['bf']],
        properror = bf[['properror']],
        method = bf[['method']]
      ))
  }
}


meta.bf.interval <- function(lower,upper,t,N,df,rscale){
  nullLike = sum(dt(t,df,log=TRUE))
  logPriorProbs = pcauchy(c(upper,lower),scale=rscale,log.p=TRUE)
  prior.interval = logExpXminusExpY(logPriorProbs[1], logPriorProbs[2])
  delta.est = t/sqrt(N)
  mean.delta = sum((delta.est * N)/sum(N))
  scale.delta = 1/sqrt(sum(N))
  log.const = meta.t.like(mean.delta,t,N,df,rscale,log=TRUE)
  intgl = integrate(meta.t.like,
                    lower = (lower-mean.delta)/scale.delta,
                    upper = (upper-mean.delta)/scale.delta,
                    t=t,N=N,df=df,rscale=rscale,log.const=log.const,
                    shift=mean.delta,scale=scale.delta)
  if(intgl[[1]] == 0 || is.nan(intgl[[1]]) || is.na(intgl[[1]])){
    message("t approximation invoked.")
    return(meta.bf.interval_approx(lower,upper,t,N,df,rscale))
  }
  val = log(intgl[[1]]*scale.delta) + log.const - prior.interval - nullLike
  err = exp(log(intgl[[2]]) - val)

  return(
    list(
      bf = val,
      properror = err,
      method = "quadrature"
    )
  )
}

meta.t.like <- Vectorize(function(delta,t,N,df,rscale=1,log.const=0,log=FALSE,shift=0,scale=1){
  ans = suppressWarnings(
    sum(dt(t,df,ncp=(scale*delta + shift)*sqrt(N),log=TRUE)) + dcauchy(scale*delta+shift,scale=rscale,log=TRUE) - log.const
  )
  if(log){
    return(ans)
  }else{
    return(exp(ans))
  }
},"delta")


meta.t.Metrop <- function(t, n1, n2=NULL, nullModel, iterations=10000, nullInterval=NULL, rscale, progress=getOption('BFprogress', interactive()), noSample=FALSE, callback = NULL, callbackInterval = 1){
  if(length(t)!=length(n1)) stop("lengths of t and n1 must be equal.")
  if(!is.null(n2)){
    if(length(t) != length(n2)) stop("If n2 is defined, it must have the same length as t.")
  }
  iterations = as.integer(iterations)

  if( is.null(n2) ){
    n2 = n1*0
    twoSample = FALSE
  }else{
    twoSample = TRUE
  }

  progress = as.logical(progress)
  if(is.null(callback) | !is.function(callback)) callback=function(...) as.integer(0)

  if(is.null(nullInterval) | nullModel){
    doInterval = FALSE
    nullInterval = c(-Inf, Inf)
    intervalCompl = FALSE
  }else{
    doInterval = TRUE
    intervalCompl = ifelse(!is.null(attr(nullInterval,"complement")),TRUE,FALSE)
    nullInterval = range(nullInterval)
  }

  if(noSample){
    chains = matrix(as.numeric(NA),1,1)
  }else{
    if(nullModel) rscale = 0
    chains = metropMetaTRcpp(t, n1, n2, twoSample, rscale, iterations,
                           doInterval, nullInterval, intervalCompl, nullModel,
                           progress, callback, callbackInterval)
    if(!nullModel & !noSample){
      acc.rate = mean(diff(chains) != 0)
      message("Independent-candidate M-H acceptance rate: ",round(100*acc.rate),"%")
    }
  }

  return(mcmc(data.frame(delta=chains)))
}

meta.bf.interval_approx <- function(lower,upper,t,N,df,rscale){

  ## Using t approximation to posterior of delta
  delta.est = t/sqrt(N)
  mean.delta = sum((delta.est * N)/sum(N))
  var.delta = 1/sum(N)

  logPriorProbs = pcauchy(c(upper,lower),scale=rscale,log.p=TRUE)
  logPostProbs = pt((c(upper,lower) - mean.delta)/sqrt(var.delta),sum(df),log.p=TRUE)

  prior.interval = logExpXminusExpY(logPriorProbs[1], logPriorProbs[2])
  post.interval = logExpXminusExpY(logPostProbs[1], logPostProbs[2])

  log.bf.interval = post.interval - prior.interval

  log.bf.point = meta.bf.interval(-Inf, Inf, t, N, df, rscale)

  if(lower == -Inf & upper == Inf){
    val = log.bf.point$bf
    err = log.bf.point$properror
  }else{
    val = log.bf.interval + log.bf.point$bf
    err = NA
  }

  return(
    list(
      bf = val,
      properror = err,
      method = "t approximation to posterior"
    )
  )
}

Try the BayesFactor package in your browser

Any scripts or data that you put into this service are public.

BayesFactor documentation built on May 29, 2024, 3:09 a.m.