Nothing
#### ### ##
# METHODS #
#### ### ##
#' sPLS-DRCOX
#' @description This function performs a sparse partial least squares deviance residual Cox (sPLS-DRCOX)
#' (based on plsRcox R package). The function returns a Coxmos model with the attribute model as
#' "sPLS-DRCOX".
#'
#' @details
#' The `sPLS-DRCOX` function implements the sparse partial least squares deviance residual Cox
#' (sPLS-DRCOX) model, a specialized approach tailored for survival analysis. This method integrates
#' the strengths of the sparse partial least squares (sPLS) technique with the Cox proportional hazards
#' model, leveraging deviance residuals as a bridge.
#'
#' The function's core lies in its ability to handle high-dimensional data, often encountered in
#' genomics or other omics studies. By incorporating the `penalty` parameter, which governs the sparsity
#' level, the function offers a fine-grained control over variable selection. This ensures that only
#' the most informative predictors contribute to the model, enhancing interpretability and reducing
#' overfitting.
#'
#' Data preprocessing is seamlessly integrated, with options to center and scale the predictors, and
#' to remove variables exhibiting near-zero or zero variance. The function also provides a mechanism
#' to retain specific variables, regardless of their variance, ensuring that domain-specific knowledge
#' can be incorporated.
#'
#' The output is comprehensive, detailing both the sPLS and Cox model components. It provides insights
#' into the selected variables, their contributions across latent components, and the overall fit of
#' the survival model. This rich output aids in understanding the underlying relationships between
#' predictors and survival outcomes.
#'
#' The `sPLS-DRCOX` function is grounded in established methodologies and is a valuable tool for
#' researchers aiming to unravel complex survival associations in high-dimensional datasets.
#'
#' @param X Numeric matrix or data.frame. Explanatory variables. Qualitative variables must be
#' transform into binary variables.
#' @param Y Numeric matrix or data.frame. Response variables. Object must have two columns named as
#' "time" and "event". For event column, accepted values are: 0/1 or FALSE/TRUE for censored and event
#' observations.
#' @param n.comp Numeric. Number of latent components to compute for the (s)PLS model (default: 10).
#' @param penalty Numeric. Penalty for sPLS-DRCOX. If penalty = 0 no penalty is applied, when
#' penalty = 1 maximum penalty (no variables are selected) based on 'plsRcox' penalty. Equal or greater
#' than 1 cannot be selected (default: 0.5).
#' @param x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default: TRUE).
#' @param x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
#' @param remove_near_zero_variance Logical. If remove_near_zero_variance = TRUE, near zero variance
#' variables will be removed (default: TRUE).
#' @param remove_zero_variance Logical. If remove_zero_variance = TRUE, zero variance variables will
#' be removed (default: TRUE).
#' @param toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero
#' variance filtering (default: NULL).
#' @param remove_non_significant Logical. If remove_non_significant = TRUE, non-significant
#' variables/components in final cox model will be removed until all variables are significant by
#' forward selection (default: FALSE).
#' @param alpha Numeric. Numerical values are regarded as significant if they fall below the
#' threshold (default: 0.05).
#' @param MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for the final
#' cox model. Used to restrict the number of variables/components can be computed in final cox models.
#' If the minimum is not meet, the model cannot be computed (default: 5).
#' @param returnData Logical. Return original and normalized X and Y matrices (default: TRUE).
#' @param verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).
#'
#' @return Instance of class "Coxmos" and model "sPLS-DRCOX". The class contains the following
#' elements:
#' \code{X}: List of normalized X data information.
#' \itemize{
#' \item \code{(data)}: normalized X matrix
#' \item \code{(weightings)}: sPLS weights
#' \item \code{(weightings_norm)}: sPLS normalize weights
#' \item \code{(W.star)}: sPLS W* vector
#' \item \code{(loadings)}: sPLS loadings
#' \item \code{(scores)}: sPLS scores/variates
#' \item \code{(E)}: error matrices
#' \item \code{(x.mean)}: mean values for X matrix
#' \item \code{(x.sd)}: standard deviation for X matrix
#' }
#' \code{Y}: List of normalized Y data information.
#' \itemize{
#' \item \code{(deviance_residuals)}: deviance residual vector used as Y matrix in the sPLS.
#' \item \code{(dr.mean)}: mean values for deviance residuals Y matrix
#' \item \code{(dr.sd)}: standard deviation for deviance residuals Y matrix'
#' \item \code{(data)}: normalized X matrix
#' \item \code{(weightings)}: sPLS weights
#' \item \code{(loadings)}: sPLS loadings
#' \item \code{(scores)}: sPLS scores/variates
#' \item \code{(ratio)}: r value for the sPLS model (used to perform predictions)
#' \item \code{(y.mean)}: mean values for Y matrix
#' \item \code{(y.sd)}: standard deviation for Y matrix'
#' }
#'
#' \code{survival_model}: List of survival model information.
#' \itemize{
#' \item \code{fit}: coxph object.
#' \item \code{AIC}: AIC of cox model.
#' \item \code{BIC}: BIC of cox model.
#' \item \code{lp}: linear predictors for train data.
#' \item \code{coef}: Coefficients for cox model.
#' \item \code{YChapeau}: Y Chapeau residuals.
#' \item \code{Yresidus}: Y residuals.
#' }
#'
#' \code{penalty}: Penalty value selected.
#'
#' \code{n.comp}: Number of components selected.
#'
#' \code{var_by_component}: Variables selected in each PLS component.
#'
#' \code{call}: call function
#'
#' \code{X_input}: X input matrix
#'
#' \code{Y_input}: Y input matrix
#'
#' \code{B.hat}: sPLS beta matrix
#'
#' \code{R2}: sPLS acumulate R2
#'
#' \code{SCR}: sPLS SCR
#'
#' \code{SCT}: sPLS SCT
#'
#' \code{alpha}: alpha value selected
#'
#' \code{nsv}: Variables removed by cox alpha cutoff.
#'
#' \code{nzv}: Variables removed by remove_near_zero_variance or remove_zero_variance.
#'
#' \code{nz_coeffvar}: Variables removed by coefficient variation near zero.
#'
#' \code{class}: Model class.
#'
#' \code{time}: time consumed for running the cox analysis.
#'
#' @author Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
#'
#' @references
#' \insertRef{Bastien_2008}{Coxmos}
#' \insertRef{Bastien_2015}{Coxmos}
#'
#' @export
#'
#' @examples
#' data("X_proteomic")
#' data("Y_proteomic")
#' X <- X_proteomic[,1:50]
#' Y <- Y_proteomic
#' splsdrcox_penalty(X, Y, n.comp = 3, penalty = 0.25, x.center = TRUE, x.scale = TRUE)
splsdrcox_penalty <- function (X, Y,
n.comp = 4, penalty = 0.5,
x.center = TRUE, x.scale = FALSE,
remove_near_zero_variance = TRUE, remove_zero_variance = FALSE, toKeep.zv = NULL,
remove_non_significant = FALSE, alpha = 0.05,
MIN_EPV = 5, returnData = TRUE, verbose = FALSE){
# tol Numeric. Tolerance for solving: solve(t(P) %*% W) (default: 1e-15).
tol = 1e-10
penalty = penalty
t1 <- Sys.time()
y.center = y.scale = FALSE
FREQ_CUT <- 95/5
#### Check values classes and ranges
params_with_limits <- list("penalty" = penalty)
check_min0_less1_variables(params_with_limits)
params_with_limits <- list("alpha" = alpha)
check_min0_max1_variables(params_with_limits)
numeric_params <- list("n.comp" = n.comp,
"MIN_EPV" = MIN_EPV, "tol" = tol)
check_class(numeric_params, class = "numeric")
logical_params <- list("x.center" = x.center, "x.scale" = x.scale,
#"y.center" = y.center, "y.scale" = y.scale,
"remove_near_zero_variance" = remove_near_zero_variance, "remove_zero_variance" = remove_zero_variance,
"remove_non_significant" = remove_non_significant, "returnData" = returnData, "verbose" = verbose)
check_class(logical_params, class = "logical")
#### Check rownames
lst_check <- checkXY.rownames(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
#### Check colnames in X for Illegal Chars (affect cox formulas)
X <- checkColnamesIllegalChars(X)
#### REQUIREMENTS
checkX.colnames(X)
checkY.colnames(Y)
lst_check <- checkXY.class(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
#### Original data
X_original <- X
Y_original <- Y
time <- Y[,"time"]
event <- Y[,"event"]
#### ZERO VARIANCE - ALWAYS
lst_dnz <- deleteZeroOrNearZeroVariance(X = X,
remove_near_zero_variance = remove_near_zero_variance,
remove_zero_variance = remove_zero_variance,
toKeep.zv = toKeep.zv,
freqCut = FREQ_CUT)
X <- lst_dnz$X
variablesDeleted <- lst_dnz$variablesDeleted
#### COEF VARIATION
lst_dnzc <- deleteNearZeroCoefficientOfVariation(X = X)
X <- lst_dnzc$X
variablesDeleted_cvar <- lst_dnzc$variablesDeleted
#### SCALING
lst_scale <- XY.scale(X, Y, x.center, x.scale, y.center, y.scale)
Xh <- lst_scale$Xh
Yh <- lst_scale$Yh
xmeans <- lst_scale$xmeans
xsds <- lst_scale$xsds
ymeans <- lst_scale$ymeans
ysds <- lst_scale$ysds
X_norm <- Xh
XXNA <- is.na(Xh) #TRUE is NA
YNA <- is.na(Y) #TRUE is NA
#### MAX PREDICTORS
n.comp <- check.maxPredictors(X, Y, MIN_EPV, n.comp)
#### ### ### ### ### ### ### ### ### ### ### ###
### ### sPLS-COX ### ###
#### ### ### ### ### ### ### ### ### ### ### ###
# 2. Surv function - NULL model
# ~ 1 indicates a NULL Cox model
coxDR <- survival::coxph(survival::Surv(time = time, event = event, type = "right") ~ 1, as.data.frame(Xh))
#3. Residuals - Default is deviance because eval type="deviance"
DR_coxph <- residuals(coxDR, type = "deviance") #"martingale", "deviance", "score", "schoenfeld", "dfbeta"', "dfbetas", "scaledsch" and "partial"
#### ### ### ### ### ### #### ### ### ### ### #
#### ### ### ### ### ### #### ### ### ### ### #
## ##
## Beginning of the loop for the components ##
## ##
#### ### ### ### ### ### #### ### ### ### ### #
#### ### ### ### ### ### #### ### ### ### ### #
#4. sPLS Algorithm
n_var <- ncol(Xh)
n_dr <- ncol(DR_coxph)
if(is.null(n_dr)){
n_dr=1
}
#CENTER DEVIANCE RESIUDALS
mu <- mean(DR_coxph) #equivalent because Y it is not normalized
DR_coxph <- scale(DR_coxph, center = mu, scale = FALSE) #center DR to DR / patients
DR_coxph_ori <- DR_coxph
#### INITIALISING VARIABLES
beta_pls <- matrix(0, n_var, n_dr)
beta_matrix <- list()
var_by_component <- list()
var_by_component_nzv <- list()
plsfit_list <- list()
predplsfit_list <- list()
Z_list <- list()
ww_list <- list()
last.pls <- NULL
E <- list()
R2 <- list()
SCR <- list()
SCT <- list()
for(h in 1:n.comp) {
# 4.1
# t(Xh) * Deviance Residuals
# For each variable, we multiply its value by the deviance residual of each patient (though this is computed across all patients).
# Example:
# Sex = 1.1724346 1.1724346 1.1724346 1.1724346 -0.8528423 1.1724346
# Residual = -0.1754595 -0.004732449 0.8676313 -0.757973 -0.3859317 -0.004732449
# Res = 0.2408943 (This is the relationship between the residuals and the variable values)
# Values close to zero indicate that there are no significant residuals.
# https://github.com/fbertran/plsRcox/blob/master/R/internal-plsRcox.R
Xh[XXNA] <- 0
#for matrix multiplications, NA as 0 is the same as not using that patient
Z <- t(Xh) %*% DR_coxph #this Z is not the same as the paper
Z_list[[h]] <- Z
Xh[XXNA] <- NA
#4.2 Get selected variables using penalty: what <- spls.dv(Z, penalty, kappa, eps, maxstep)
# spls DEVIANCE RESIDUALS
Z_median <- median(abs(Z))
Z_norm <- Z/Z_median #normalizar respecto la mediana
# ww2 <- matrix(0, n_var, 1)
# rownames(ww2) <- colnames(Xh)
# lambda = 0.2
# Z2_l <- (abs(Z2) - lambda/2)
# ww2[Z2_l >= 0] <- Z2_l[Z2_l>=0] * sign(Z2)[Z2_l>=0]
ww <- matrix(0, n_var, 1)
rownames(ww) <- colnames(Xh)
if(penalty < 1) { # threshold
Z_mod <- abs(Z_norm) - penalty * max(abs(Z_norm)) #keep those variables greater than penalty * max value
if(sum(Z_mod >= 0)==1){ #only one variable does not allow to compute a PLS model (take the another one)
Z_mod_neg <- Z_mod[which(Z_mod < 0),,drop = FALSE]
cn_extra <- rownames(Z_mod_neg)[which.max(Z_mod_neg)]
Z_mod[cn_extra,] <- 0.01
}
ww[Z_mod >= 0] <- Z_mod[Z_mod >= 0] * (sign(Z_mod))[Z_mod >= 0] #keeping the sign
}else{
stop_quietly("penalty should be a value between [0, 1), default is 0.5")
}
ww_list[[h]] <- ww
#4.3 Get variables greater than 0 and variables already selected (beta !=0)
if(h==1){
A <- rownames(ww[which(ww != 0),,drop = FALSE])
}else{
A <- unique(c(rownames(ww[which(ww != 0),,drop = FALSE]), names(beta_matrix[,h-1])[which(beta_matrix[, h-1]!=0)]))
}
Xa <- Xh[,A,drop = FALSE]
#4.4 Run standard PLS with new components and the deviance residuals - Filter near zero variables
nZ <- caret::nearZeroVar(Xa, saveMetrics = TRUE) #to check if we have to do some changes in the data
td <- rownames(nZ[nZ$nzv==TRUE,])
#Do not delete
# if(any(mustKeep %in% td)){
# td <- td[-which(td %in% mustKeep)]
# }
lstDeleted <- td
if(length(lstDeleted)>0 & ncol(Xa)>2){
Xa <- Xa[,!colnames(Xa) %in% lstDeleted, drop = FALSE]
}
A_nzv <- colnames(Xa)
#### ### ### #
# PREDICTION #
#### ### ### #
#But always using the complete residuals
# plsfit3 <- ropls::opls(x = Xa, y = DR_coxph_ori, predI = min(h, ncol(Xa)), scaleC = "none")
# plsfit2 <- mixOmics::pls(X = Xa, Y = DR_coxph_ori, ncomp = min(h, ncol(Xa)), scale = FALSE)
plsfit <- tryCatch(
# Specifying expression
expr = {
pls2(X = Xa, Y = DR_coxph_ori, n.comp = min(h, ncol(Xa)),
x.center = FALSE, x.scale = FALSE, y.center = FALSE, y.scale = FALSE,
it = 100, tol.W.star = tol, verbose = verbose)
},
# Specifying error message
error = function(e){
message(paste0("splsdrcox: ", e$message, "\n"))
NA
}
)
if(all(is.na(plsfit))){
break
}
#plsfit$X$weightings_norm;plsfit2$loadings$X;plsfit3@weightMN
XaNA <- is.na(Xa) #TRUE is NA
Xa[XaNA] <- 0
predplsfit <- Xa[,rownames(plsfit$X$loadings),drop = FALSE] %*% plsfit$B[,,drop = FALSE]
Xa[XaNA] <- NA
#### ### ### ### ###
# UPDATING RESULTS #
#### ### ### ### ###
predplsfit_list[[h]] <- predplsfit
beta_pls <- matrix(0, n_var, n_dr)
rownames(beta_pls) <- colnames(Xh)
#beta_pls[A_nzv,] <- matrix(data = plsfit$B[,min(h, ncol(Xa)),drop = FALSE], nrow = length(A_nzv), ncol = n_dr) #n.comp from new pls and not all
beta_pls[A_nzv,] <- matrix(data = plsfit$B[,,drop = FALSE], nrow = length(A_nzv), ncol = n_dr) #n.comp from new pls and not all
beta_matrix <- cbind(beta_matrix, beta_pls) #res
var_by_component[[h]] <- A
var_by_component_nzv[[h]] <- A_nzv
#### ### ### ### ##
# UPDATING VALUES #
#### ### ### ### ##
#DR_coxph <- DR_coxph_ori - predplsfit[,min(h, ncol(Xa)),drop = FALSE] #for manual prediction
DR_coxph <- DR_coxph_ori - predplsfit[,,drop = FALSE] #for manual prediction
#R2 calculation
#E[[h]] = DR_coxph_ori - predplsfit$predict[,,plsfit$n.comp] #same formula, but adding components
E[[h]] = DR_coxph #same formula, but adding components
SCR[[h]] = sum(apply(E[[h]],2,function(x) sum(x**2)))
SCT[[h]] = sum(apply(as.matrix(DR_coxph_ori),2,function(x) sum(x**2))) #equivalent sum((DR_coxph_ori - mean(DR_coxph_ori))**2)
R2[[h]] = 1 - (SCR[[h]]/SCT[[h]]) #deviance residuals explanation
last.pls <- plsfit
}
#### ### ### ### ### ### ### ### ### ### ### #
# #
# Computation of the coefficients #
# of the model with kk components #
# #
#### ### ### ### ### ### ### ### ### ### ### #
#### ### ### ### ### ### ### ### ### ### ### ##
### ### PLS-COX ### ###
#### ### ### ### ### ### ### ### ### ### ### ##
#n.comp_used <- ncol(tt_splsDR) #can be lesser than expected because we have lesser variables to select because penalization
n.comp_used <- ncol(last.pls$X$scores)
#d <- as.data.frame(last.pls$X$scores[,,drop = FALSE])
d <- as.data.frame(last.pls$X$scores[,,drop = FALSE])
rownames(d) <- rownames(X)
colnames(d) <- paste0("comp_", 1:n.comp_used)
aux <- tryCatch(
# Specifying expression
expr = {
survival::coxph(formula = survival::Surv(time,event) ~ .,
data = d[,1:n.comp_used,drop = FALSE],
ties = "efron",
singular.ok = TRUE,
robust = TRUE,
nocenter = rep(1, ncol(d[,1:n.comp_used,drop = FALSE])),
model = TRUE, x = TRUE)
},
# Specifying error message
error = function(e){
if(verbose){
message(e)
}
# invisible(gc())
return(NA)
}
)
# keep at least one component
while(all(is.na(aux)) & h>1){
h <- h-1
aux <- tryCatch(
# Specifying expression
expr = {
survival::coxph(formula = survival::Surv(time,event) ~ .,
data = d[,1:h,drop = FALSE],
ties = "efron",
singular.ok = TRUE,
robust = TRUE,
nocenter = rep(1, ncol(d[,1:h,drop = FALSE])),
model = TRUE, x = TRUE)
},
# Specifying error message
error = function(e){
if(verbose){
message(e)
}
# invisible(gc())
return(NA)
}
)
}
# RETURN a MODEL with ALL significant Variables from complete, deleting one by one
removed_variables <- NULL
removed_variables_cor <- NULL
# REMOVE NA-PVAL VARIABLES
# p_val could be NA for some variables (if NA change to P-VAL=1)
# DO IT ALWAYS, we do not want problems in COX models
if(all(c("time", "event") %in% colnames(d))){
lst_model <- removeNAorINFcoxmodel(model = aux, data = d, time.value = NULL, event.value = NULL)
}else{
lst_model <- removeNAorINFcoxmodel(model = aux, data = cbind(d, Yh), time.value = NULL, event.value = NULL)
}
aux <- lst_model$model
removed_variables_cor <- c(removed_variables_cor, lst_model$removed_variables)
#RETURN a MODEL with ALL significant Variables from complete, deleting one by one in backward method
if(remove_non_significant){
if(all(c("time", "event") %in% colnames(d))){
lst_rnsc <- removeNonSignificativeCox(cox = aux, alpha = alpha, cox_input = d, time.value = NULL, event.value = NULL)
}else{
lst_rnsc <- removeNonSignificativeCox(cox = aux, alpha = alpha, cox_input = cbind(d, Yh), time.value = NULL, event.value = NULL)
}
aux <- lst_rnsc$cox
removed_variables <- lst_rnsc$removed_variables
}
cox_model <- NULL
cox_model$fit <- aux
names(var_by_component_nzv) <- paste0("comp_", 1:n.comp_used)
#we cannot compute all components
if(h != n.comp & !all(is.na(cox_model$fit))){
if(verbose){
message(paste0("Model cannot be computed for all components. Final model select ", h," components instead of ", n.comp,"."))
}
#update all values
last.pls$X$weightings <- last.pls$X$weightings[,1:h,drop = FALSE]
last.pls$X$W.star = last.pls$X$W.star[,1:h,drop = FALSE]
last.pls$X$loadings = last.pls$X$loadings[,1:h,drop = FALSE]
last.pls$X$scores = last.pls$X$scores[,1:h,drop = FALSE]
last.pls$Y$weightings = last.pls$Y$weightings[,1:h,drop = FALSE]
last.pls$Y$loadings = last.pls$Y$loadings[,1:h,drop = FALSE]
last.pls$Y$scores = last.pls$Y$scores[,1:h,drop = FALSE]
last.pls$Y$ratio = last.pls$Y$ratio[,1:h,drop = FALSE]
var_by_component_nzv = var_by_component_nzv[1:h] #variables selected for each component
names(var_by_component_nzv) <- paste0("comp_", 1:h)
last.pls$B = last.pls$B[,,drop = FALSE] #only final coefficients
n.comp_used <- h
}
#or if we filter some components
if(h != length(names(cox_model$fit$coefficients))){
if(verbose){
message(paste0("Updating vectors. Final model select ", length(names(cox_model$fit$coefficients))," components instead of ", n.comp,"."))
}
#update all values
which_to_keep <- which(colnames(last.pls$X$weightings) %in% names(cox_model$fit$coefficients))
last.pls$X$weightings <- last.pls$X$weightings[,names(cox_model$fit$coefficients),drop = FALSE]
last.pls$X$W.star = last.pls$X$W.star[,names(cox_model$fit$coefficients),drop = FALSE]
last.pls$X$loadings = last.pls$X$loadings[,names(cox_model$fit$coefficients),drop = FALSE]
last.pls$X$scores = last.pls$X$scores[,names(cox_model$fit$coefficients),drop = FALSE]
last.pls$Y$weightings = last.pls$Y$weightings[,names(cox_model$fit$coefficients),drop = FALSE]
last.pls$Y$loadings = last.pls$Y$loadings[,names(cox_model$fit$coefficients),drop = FALSE]
last.pls$Y$scores = last.pls$Y$scores[,names(cox_model$fit$coefficients),drop = FALSE]
last.pls$Y$ratio = last.pls$Y$ratio[,names(cox_model$fit$coefficients),drop = FALSE]
var_by_component_nzv = var_by_component_nzv[which_to_keep] #variables selected for each component
names(var_by_component_nzv) <- paste0("comp_", which_to_keep)
last.pls$B = last.pls$B[,,drop = FALSE] #only final coefficients
n.comp_used <- ncol(max(which_to_keep))
}
survival_model <- NULL
if(!length(cox_model$fit) == 1){
survival_model <- getInfoCoxModel(cox_model$fit)
}
func_call <- match.call()
if(!returnData){
survival_model <- removeInfoSurvivalModel(survival_model)
}
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
# invisible(gc())
return(splsdrcox_penalty_class(list(X = list("data" = if(returnData) X_norm else NA,
"weightings" = if(returnData) last.pls$X$weightings else NA,
"W.star" = last.pls$X$W.star,
"loadings" = last.pls$X$loadings,
"scores" = last.pls$X$scores,
"E" = if(returnData) E else NA,
"x.mean" = xmeans, "x.sd" = xsds),
Y = list("deviance_residuals" = if(returnData) DR_coxph_ori else NA,
"dr.mean" = mu,
"dr.sd" = NULL, #deviance_residuals object already centered
"data" = Yh,
"weightings" = if(returnData) last.pls$Y$weightings else NA,
"loadings" = if(returnData) last.pls$Y$loadings else NA,
"scores" = if(returnData) last.pls$Y$scores else NA,
"ratio" = if(returnData) last.pls$Y$ratio else NA,
"y.mean" = ymeans, "y.sd" = ysds),
survival_model = survival_model,
penalty = penalty,
n.comp = n.comp_used, #number of components
var_by_component = var_by_component_nzv, #variables selected for each component
call = if(returnData) func_call else NA,
X_input = if(returnData) X_original else NA,
Y_input = if(returnData) Y_original else NA,
B.hat = last.pls$B,
R2 = R2,
SCR = SCR,
SCT = SCT,
alpha = alpha,
nsv = removed_variables,
nzv = variablesDeleted,
nz_coeffvar = variablesDeleted_cvar,
class = pkg.env$splsdrcox_penalty,
time = time)))
}
#### ### ### ### ###
# CROSS-EVALUATION #
#### ### ### ### ###
#' sPLS-DRCOX Cross-Validation
#' @description This function performs cross-validated sparse partial least squares DRCox (sPLS-DRCOX).
#' The function returns the optimal number of components and the optimal sparsity penalty value based
#' on cross-validation. The performance could be based on multiple metrics as Area Under the Curve
#' (AUC), I. Brier Score or C-Index. Furthermore, the user could establish more than one metric
#' simultaneously.
#'
#' @details
#' The `sPLS-DRCOX Cross-Validation` function offers a robust approach to fine-tune the hyperparameters
#' of the sPLS-DRCOX model, ensuring optimal performance in survival analysis tasks. By systematically
#' evaluating different combinations of hyperparameters, this function identifies the best model
#' configuration that minimizes prediction error.
#'
#' Cross-validation is a crucial step in survival analysis, especially when dealing with
#' high-dimensional datasets. It provides an unbiased assessment of the model's generalization
#' capability, safeguarding against overfitting. This function employs a k-fold cross-validation
#' strategy, partitioning the data into multiple subsets (folds) and iteratively using each fold as
#' a test set while the remaining folds serve as training data.
#'
#' One of the primary strengths of this function is its flexibility. Users can specify a range of
#' values for the number of PLS components and the penalty parameter `penalty`. The function then
#' evaluates all possible combinations, returning the optimal configuration that yields the best
#' predictive performance.
#'
#' Additionally, the function offers advanced features like parallel processing for faster computation,
#' and the ability to return all models from the cross-validation process. This is particularly
#' useful for in-depth analysis and comparisons.
#'
#' The output provides comprehensive insights, including performance metrics for each fold, run, and
#' hyperparameter combination. Visualization plots like AIC, C-Index, I. Brier Score, and AUC plots
#' further aid in understanding the model's performance across different configurations.
#'
#' @param X Numeric matrix or data.frame. Explanatory variables. Qualitative variables must be
#' transform into binary variables.
#' @param Y Numeric matrix or data.frame. Response variables. Object must have two columns named as
#' "time" and "event". For event column, accepted values are: 0/1 or FALSE/TRUE for censored and
#' event observations.
#' @param max.ncomp Numeric. Maximum number of PLS components to compute for the cross validation
#' (default: 8).
#' @param penalty.list Numeric vector. Vector of penalty values. Penalty for sPLS-DRCOX. If
#' penalty = 0 no penalty is applied, when penalty = 1 maximum penalty (no variables are selected)
#' based on 'plsRcox' penalty. Equal or greater than 1 cannot be selected (default: seq(0.1,0.9,0.2)).
#' @param n_run Numeric. Number of runs for cross validation (default: 3).
#' @param k_folds Numeric. Number of folds for cross validation (default: 10).
#' @param x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default: TRUE).
#' @param x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
#' @param remove_near_zero_variance Logical. If remove_near_zero_variance = TRUE, near zero variance
#' variables will be removed (default: TRUE).
#' @param remove_zero_variance Logical. If remove_zero_variance = TRUE, zero variance variables will
#' be removed (default: TRUE).
#' @param toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero variance
#' filtering (default: NULL).
#' @param remove_variance_at_fold_level Logical. If remove_variance_at_fold_level = TRUE, (near) zero
#' variance will be removed at fold level. Not recommended. (default: FALSE).
#' @param remove_non_significant_models Logical. If remove_non_significant_models = TRUE,
#' non-significant models are removed before computing the evaluation. A non-significant model is a
#' model with at least one component/variable with a P-Value higher than the alpha cutoff.
#' @param alpha Numeric. Numerical values are regarded as significant if they fall below the
#' threshold (default: 0.05).
#' @param remove_non_significant Logical. If remove_non_significant = TRUE, non-significant
#' variables/components in final cox model will be removed until all variables are significant by
#' forward selection (default: FALSE).
#' @param alpha Numeric. Numerical values are regarded as significant if they fall below the
#' threshold (default: 0.05).
#' @param w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).
#' @param w_C.Index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).
#' @param w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).
#' @param w_I.BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (default: 0).
#' @param times Numeric vector. Time points where the AUC will be evaluated. If NULL, a maximum of
#' 'max_time_points' points will be selected equally distributed (default: NULL).
#' @param max_time_points Numeric. Maximum number of time points to use for evaluating the model
#' (default: 15).
#' @param MIN_AUC_INCREASE Numeric. Minimum improvement between different cross validation models
#' to continue evaluating higher values in the multiple tested parameters. If it is not reached for
#' next 'MIN_COMP_TO_CHECK' models and the minimum 'MIN_AUC' value is reached, the evaluation stops
#' (default: 0.01).
#' @param MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the minimum is
#' reached, the evaluation could stop if the improvement does not reach an AUC higher than adding
#' the 'MIN_AUC_INCREASE' value (default: 0.8).
#' @param MIN_COMP_TO_CHECK Numeric. Number of penalties/components to evaluate to check if the AUC
#' improves. If for the next 'MIN_COMP_TO_CHECK' the AUC is not better and the 'MIN_AUC' is meet,
#' the evaluation could stop (default: 3).
#' @param pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
#' "mean" or "median" (default: "mean").
#' @param pred.method Character. AUC evaluation algorithm method for evaluate the model performance.
#' Must be one of the following: "risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C",
#' "smoothROCtime_I" (default: "cenROC").
#' @param fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated
#' simultaneously. If fast_mode = FALSE, for each run, all linear predictors are computed for test
#' observations. Once all have their linear predictors, the evaluation is perform across all the
#' observations together (default: FALSE).
#' @param MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for the final
#' cox model. Used to restrict the number of variables/components can be computed in final cox models.
#' If the minimum is not meet, the model cannot be computed (default: 5).
#' @param return_models Logical. Return all models computed in cross validation (default: FALSE).
#' @param returnData Logical. Return original and normalized X and Y matrices (default: TRUE).
#' @param PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
#' total cores - 1 will be used. It could lead to higher RAM consumption (default: FALSE).
#' @param verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).
#' @param seed Number. Seed value for performing runs/folds divisions (default: 123).
#'
#' @return Instance of class "Coxmos" and model "cv.sPLS-DRCOX".
#' \code{best_model_info}: A data.frame with the information for the best model.
#' \code{df_results_folds}: A data.frame with fold-level information.
#' \code{df_results_runs}: A data.frame with run-level information.
#' \code{df_results_comps}: A data.frame with component-level information (for cv.coxEN, EN.alpha
#' information).
#'
#' \code{lst_models}: If return_models = TRUE, return a the list of all cross-validated models.
#' \code{pred.method}: AUC evaluation algorithm method for evaluate the model performance.
#'
#' \code{opt.comp}: Optimal component selected by the best_model.
#' \code{opt.penalty}: Optimal penalty/penalty selected by the best_model.
#' \code{opt.nvar}: Optimal number of variables selected by the best_model.
#'
#' \code{plot_AIC}: AIC plot by each hyper-parameter.
#' \code{plot_C.Index}: C-Index plot by each hyper-parameter.
#' \code{plot_I.BRIER}: Integrative Brier Score plot by each hyper-parameter.
#' \code{plot_AUC}: AUC plot by each hyper-parameter.
#'
#' \code{class}: Cross-Validated model class.
#'
#' \code{lst_train_indexes}: List (of lists) of indexes for the observations used in each run/fold
#' for train the models.
#' \code{lst_test_indexes}: List (of lists) of indexes for the observations used in each run/fold
#' for test the models.
#'
#' \code{time}: time consumed for running the cross-validated function.
#'
#' @author Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
#'
#' @export
#'
#' @examples
#' data("X_proteomic")
#' data("Y_proteomic")
#' set.seed(123)
#' index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
#' X_train <- X_proteomic[index_train,1:50]
#' Y_train <- Y_proteomic[index_train,]
#' cv.splsdrcox_model <- cv.splsdrcox_penalty(X_train, Y_train, max.ncomp = 2, penalty.list = c(0.1),
#' n_run = 1, k_folds = 2, x.center = TRUE, x.scale = TRUE)
cv.splsdrcox_penalty <- function (X, Y,
max.ncomp = 8, penalty.list = seq(0.1,0.9,0.2),
n_run = 3, k_folds = 10,
x.center = TRUE, x.scale = FALSE,
remove_near_zero_variance = TRUE, remove_zero_variance = TRUE, toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE, remove_non_significant = FALSE, alpha = 0.05,
w_AIC = 0, w_C.Index = 0, w_AUC = 1, w_I.BRIER = 0, times = NULL,
max_time_points = 15,
MIN_AUC_INCREASE = 0.01, MIN_AUC = 0.8, MIN_COMP_TO_CHECK = 3,
pred.attr = "mean", pred.method = "cenROC", fast_mode = FALSE,
MIN_EPV = 5, return_models = FALSE, returnData = FALSE,
PARALLEL = FALSE, verbose = FALSE, seed = 123){
# tol Numeric. Tolerance for solving: solve(t(P) %*% W) (default: 1e-15).
tol = 1e-10
penalty.list <- penalty.list
t1 <- Sys.time()
y.center = y.scale = FALSE
FREQ_CUT <- 95/5
#### ### ###
# WARNINGS #
#### ### ###
#### Check evaluator installed:
checkLibraryEvaluator(pred.method)
#### Check values classes and ranges
params_with_limits <- list("penalty.list" = penalty.list)
check_min0_less1_variables(params_with_limits)
params_with_limits <- list("MIN_AUC_INCREASE" = MIN_AUC_INCREASE, "MIN_AUC" = MIN_AUC, "alpha" = alpha,
"w_AIC" = w_AIC, "w_C.Index" = w_C.Index, "w_AUC" = w_AUC, "w_I.BRIER" = w_I.BRIER)
check_min0_max1_variables(params_with_limits)
numeric_params <- list("max.ncomp" = max.ncomp,
"n_run" = n_run, "k_folds" = k_folds, "max_time_points" = max_time_points,
"MIN_COMP_TO_CHECK" = MIN_COMP_TO_CHECK, "MIN_EPV" = MIN_EPV, "seed" = seed, "tol" = tol)
check_class(numeric_params, class = "numeric")
logical_params <- list("x.center" = x.center, "x.scale" = x.scale,
#"y.center" = y.center, "y.scale" = y.scale,
"remove_near_zero_variance" = remove_near_zero_variance, "remove_zero_variance" = remove_zero_variance,
"remove_variance_at_fold_level" = remove_variance_at_fold_level,
"remove_non_significant_models" = remove_non_significant_models,
"remove_non_significant" = remove_non_significant,
"return_models" = return_models,"returnData" = returnData, "verbose" = verbose, "PARALLEL" = PARALLEL)
check_class(logical_params, class = "logical")
character_params <- list("pred.attr" = pred.attr, "pred.method" = pred.method)
check_class(character_params, class = "character")
#### FIX possible SEQ() problems
penalty.list <- as.character(penalty.list)
penalty.list <- as.numeric(penalty.list)
#### Check cv-folds
lst_checkFR <- checkFoldRuns(Y, n_run, k_folds, fast_mode)
n_run <- lst_checkFR$n_run
fast_mode <- lst_checkFR$fast_mode
#### Check rownames
lst_check <- checkXY.rownames(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
#### Illegal chars in colnames
X <- checkColnamesIllegalChars(X)
#### REQUIREMENTS
checkX.colnames(X)
checkY.colnames(Y)
lst_check <- checkXY.class(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
check.cv.weights(c(w_AIC, w_C.Index, w_I.BRIER, w_AUC))
# if(!pred.method %in% c("risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I")){
# stop_quietly(paste0("pred.method must be one of the following: ", paste0(c("risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I"), collapse = ", ")))
# }
if(!pred.method %in% pkg.env$AUC_evaluators){
stop_quietly(paste0("pred.method must be one of the following: ", paste0(pkg.env$AUC_evaluators, collapse = ", ")))
}
#### MAX PREDICTORS
max.ncomp <- check.ncomp(X, max.ncomp)
max.ncomp <- check.maxPredictors(X, Y, MIN_EPV, max.ncomp, verbose = verbose)
if(MIN_COMP_TO_CHECK >= max.ncomp){
MIN_COMP_TO_CHECK = max(max.ncomp-1, 1)
}
#### REQUIREMENTS
if(!remove_variance_at_fold_level & (remove_near_zero_variance | remove_zero_variance)){
lst_dnz <- deleteZeroOrNearZeroVariance(X = X,
remove_near_zero_variance = remove_near_zero_variance,
remove_zero_variance = remove_zero_variance,
toKeep.zv = toKeep.zv,
freqCut = FREQ_CUT)
X <- lst_dnz$X
variablesDeleted <- lst_dnz$variablesDeleted
}else{
variablesDeleted <- NULL
}
#### COEF VARIATION
if(!remove_variance_at_fold_level & (remove_near_zero_variance | remove_zero_variance)){
lst_dnzc <- deleteNearZeroCoefficientOfVariation(X = X)
X <- lst_dnzc$X
variablesDeleted_cvar <- lst_dnzc$variablesDeleted
}else{
variablesDeleted_cvar <- NULL
}
#### #
# CV #
#### #
# lst_data <- splitData_Iterations_Folds(X, Y, n_run = n_run, k_folds = k_folds, seed = seed) #FOR TEST
# lst_X_train <- lst_data$lst_X_train
# lst_Y_train <- lst_data$lst_Y_train
# lst_X_test <- lst_data$lst_X_test
# lst_Y_test <- lst_data$lst_Y_test
# k_folds <- lst_data$k_folds
#
# lst_train_indexes <- lst_data$lst_train_index
# lst_test_indexes <- lst_data$lst_test_index
lst_data <- splitData_Iterations_Folds_indexes(Y, n_run = n_run, k_folds = k_folds, seed = seed) #FOR TEST
lst_train_indexes <- lst_data$lst_train_index
lst_test_indexes <- lst_data$lst_test_index
#### ### ### ###
# TRAIN MODELS #
#### ### ### ###
#total_models <- 1 * k_folds * n_run * length(penalty.list)
total_models <- max.ncomp * k_folds * n_run * length(penalty.list)
lst_model <- get_Coxmos_models2.0(method = pkg.env$splsdrcox_penalty,
X_train = X, Y_train = Y,
lst_X_train = lst_train_indexes, lst_Y_train = lst_train_indexes,
max.ncomp = max.ncomp, penalty.list = penalty.list, EN.alpha.list = NULL, max.variables = NULL, vector = NULL,
n_run = n_run, k_folds = k_folds,
MIN_NVAR = NULL, MAX_NVAR = NULL, MIN_AUC_INCREASE = NULL, EVAL_METHOD = NULL,
n.cut_points = NULL,
x.center = x.center, x.scale = x.scale,
y.center = y.center, y.scale = y.scale,
remove_near_zero_variance = remove_variance_at_fold_level, remove_zero_variance = FALSE, toKeep.zv = NULL,
alpha = alpha, MIN_EPV = MIN_EPV,
remove_non_significant = remove_non_significant, tol = tol, max.iter = NULL,
returnData = returnData, total_models = total_models,
PARALLEL = PARALLEL, verbose = verbose)
comp_model_lst = lst_model$comp_model_lst
info = lst_model$info
if(all(is.null(comp_model_lst))){
message(paste0("Best model could NOT be obtained. All models computed present problems. Try to remove variance at fold level. If problem persists, try to delete manually some problematic variables."))
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
if(return_models){
return(cv.splsdrcox_penalty_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = comp_model_lst, pred.method = NULL, opt.comp = NULL, opt.penalty = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.splsdrcox_penalty, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}else{
return(cv.splsdrcox_penalty_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = NULL, pred.method = NULL, opt.comp = NULL, opt.penalty = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.splsdrcox_penalty, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}
}
#### ### ### ### ### ### #
# BEST MODEL FOR CV DATA #
#### ### ### ### ### ### #
total_models <- max.ncomp * k_folds * n_run * length(penalty.list)
df_results_evals <- get_COX_evaluation_AIC_CINDEX(comp_model_lst = comp_model_lst, alpha = alpha,
max.ncomp = max.ncomp, penalty.list = penalty.list, n_run = n_run, k_folds = k_folds,
total_models = total_models, remove_non_significant_models = remove_non_significant_models, verbose = verbose)
if(all(is.null(df_results_evals))){
message(paste0("Best model could NOT be obtained. All models computed present problems."))
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
if(return_models){
return(cv.splsdrcox_penalty_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = comp_model_lst, pred.method = NULL, opt.comp = NULL, opt.penalty = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.splsdrcox_penalty, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}else{
return(cv.splsdrcox_penalty_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = NULL, pred.method = NULL, opt.comp = NULL, opt.penalty = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.splsdrcox_penalty, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}
}
#### ### ### ### ### ### #
# EVALUATING BRIER SCORE #
#### ### ### ### ### ### #
df_results_evals_comp <- NULL
df_results_evals_run <- NULL
df_results_evals_fold <- NULL
optimal_comp_index <- NULL
optimal_comp_flag <- FALSE
optimal_eta_index <- NULL
optimal_eta <- NULL
if(TRUE){ #compute always BRIER SCORE
#calculate time vector if still NULL
if(is.null(times)){
times <- getTimesVector(Y, max_time_points = max_time_points)
}
#As we are measuring just one evaluator and one method - PARALLEL = FALSE
lst_df <- get_COX_evaluation_BRIER_sPLS(comp_model_lst = comp_model_lst,
fast_mode = fast_mode,
X_test = X, Y_test = Y,
lst_X_test = lst_test_indexes, lst_Y_test = lst_test_indexes,
df_results_evals = df_results_evals, times = times,
pred.method = pred.method, pred.attr = pred.attr,
max.ncomp = max.ncomp, penalty.list = penalty.list, n_run = n_run, k_folds = k_folds,
MIN_AUC_INCREASE = MIN_AUC_INCREASE, MIN_AUC = MIN_AUC, MIN_COMP_TO_CHECK = MIN_COMP_TO_CHECK,
w_I.BRIER = w_I.BRIER, method.train = pkg.env$splsdrcox_penalty, PARALLEL = FALSE, verbose = verbose)
df_results_evals_comp <- lst_df$df_results_evals_comp
df_results_evals_run <- lst_df$df_results_evals_run
df_results_evals_fold <- lst_df$df_results_evals_fold
}
#### ### ### ### #
# EVALUATING AUC #
#### ### ### ### #
if(w_AUC!=0){
total_models <- ifelse(!fast_mode, n_run * max.ncomp * length(penalty.list), k_folds * n_run * max.ncomp * length(penalty.list))
#times should be the same for all folds
#calculate time vector if still NULL
if(is.null(times)){
times <- getTimesVector(Y, max_time_points = max_time_points)
}
#As we are measuring just one evaluator and one method - PARALLEL = FALSE
lst_df <- get_COX_evaluation_AUC_sPLS(comp_model_lst = comp_model_lst,
X_test = X, Y_test = Y,
lst_X_test = lst_test_indexes, lst_Y_test = lst_test_indexes,
df_results_evals = df_results_evals, times = times,
fast_mode = fast_mode, pred.method = pred.method, pred.attr = pred.attr,
max.ncomp = max.ncomp, penalty.list = penalty.list, n_run = n_run, k_folds = k_folds,
MIN_AUC_INCREASE = MIN_AUC_INCREASE, MIN_AUC = MIN_AUC, MIN_COMP_TO_CHECK = MIN_COMP_TO_CHECK,
w_AUC = w_AUC, method.train = pkg.env$splsdrcox_penalty, PARALLEL = FALSE, verbose = verbose)
if(is.null(df_results_evals_comp)){
df_results_evals_comp <- lst_df$df_results_evals_comp
}else{
df_results_evals_comp$AUC <- lst_df$df_results_evals_comp$AUC
}
if(is.null(df_results_evals_run)){
df_results_evals_run <- lst_df$df_results_evals_run
}else{
df_results_evals_run$AUC <- lst_df$df_results_evals_run$AUC
}
if(is.null(df_results_evals_fold)){
df_results_evals_fold <- lst_df$df_results_evals_fold
}else{
df_results_evals_fold$AUC <- lst_df$df_results_evals_fold$AUC
}
optimal_comp_index <- lst_df$optimal_comp_index
optimal_comp_flag <- lst_df$optimal_comp_flag
optimal_eta <- lst_df$optimal_eta
optimal_eta_index <- lst_df$optimal_eta_index
}
#### ### ### #
# BEST MODEL #
#### ### ### #
df_results_evals_comp <- cv.getScoreFromWeight(df_results_evals_comp, w_AIC, w_C.Index, w_I.BRIER, w_AUC,
colname_AIC = "AIC", colname_c_index = "C.Index", colname_AUC = "AUC", colname_BRIER = "IBS")
if(optimal_comp_flag){
best_model_info <- df_results_evals_comp[df_results_evals_comp[,"n.comps"]==optimal_comp_index & df_results_evals_comp[,"penalty"]==optimal_eta,, drop = FALSE][1,]
best_model_info <- as.data.frame(best_model_info)
}else{
best_model_info <- df_results_evals_comp[which(df_results_evals_comp[,"score"] == max(df_results_evals_comp[,"score"], na.rm = TRUE)),, drop = FALSE][1,]
best_model_info <- as.data.frame(best_model_info)
}
#### ###
# PLOT #
#### ###
class = pkg.env$splsdrcox_penalty
lst_EVAL_PLOTS <- get_EVAL_PLOTS(fast_mode = fast_mode, best_model_info = best_model_info, w_AUC = w_AUC, w_I.BRIER = w_I.BRIER, max.ncomp = max.ncomp, penalty.list = penalty.list,
df_results_evals_fold = df_results_evals_fold, df_results_evals_run = df_results_evals_run, df_results_evals_comp = df_results_evals_comp,
colname_AIC = "AIC", colname_c_index = "C.Index", colname_AUC = "AUC", colname_BRIER = "IBS", x.text = "Component", class = class)
ggp_AUC <- lst_EVAL_PLOTS$ggp_AUC
ggp_IBS <- lst_EVAL_PLOTS$ggp_IBS
ggp_C.Index <- lst_EVAL_PLOTS$ggp_C.Index
ggp_AIC <- lst_EVAL_PLOTS$ggp_AIC
df_results_evals_comp <- lst_EVAL_PLOTS$df_results_evals_comp
#### ### #
# RETURN #
#### ### #
df_results_evals$penalty <- as.numeric(as.character(df_results_evals$penalty))
df_results_evals_run$penalty <- as.numeric(as.character(df_results_evals_run$penalty))
df_results_evals_comp$penalty <- as.numeric(as.character(df_results_evals_comp$penalty))
message(paste0("Best model obtained."))
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
# invisible(gc())
if(return_models){
return(cv.splsdrcox_penalty_class(list(best_model_info = best_model_info, df_results_folds = df_results_evals_fold, df_results_runs = df_results_evals_run, df_results_comps = df_results_evals_comp, lst_models = comp_model_lst, pred.method = pred.method, opt.comp = best_model_info$n.comps, opt.penalty = best_model_info$penalty, plot_AIC = ggp_AIC, plot_C.Index = ggp_C.Index, plot_I.BRIER = ggp_IBS, plot_AUC = ggp_AUC, class = pkg.env$cv.splsdrcox_penalty, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}else{
return(cv.splsdrcox_penalty_class(list(best_model_info = best_model_info, df_results_folds = df_results_evals_fold, df_results_runs = df_results_evals_run, df_results_comps = df_results_evals_comp, lst_models = NULL, pred.method = pred.method, opt.comp = best_model_info$n.comps, opt.penalty = best_model_info$penalty, plot_AIC = ggp_AIC, plot_C.Index = ggp_C.Index, plot_I.BRIER = ggp_IBS, plot_AUC = ggp_AUC, class = pkg.env$cv.splsdrcox_penalty, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}
}
#### ### ### #
# PREDICTION #
#### ### ### #
predict_mixOmics.pls <- function(object, newdata){
if (missing(newdata))
stop_quietly("No new data available.")
if(!class(object) %in% c("mixo_pls", "mixo_spls"))
stop_quietly("Object must be a 'mixo_pls' object.")
X = object$X
Y = object$Y
q = ncol(Y)
p = ncol(X)
n.comp = object$ncomp
x.center <- attr(X,"scaled:center")
x.scale <- attr(X,"scaled:scale")
if(is.null(x.center)){
x.center <- FALSE
}
if(is.null(x.scale)){
x.scale <- FALSE
}
newdata = scale(newdata, center = x.center, scale = x.scale)
if(ncol(newdata) != p){
stop_quietly(paste0("'newdata' must be a numeric matrix with ncol = ", p, " or a vector of length = ", p, "."))
}
X_ww = object$loadings$X #loading x
Y_ww = object$loadings$Y #loading y
X_sco = object$variates$X[,drop = FALSE] #variate x
Y_sco = object$variates$Y[,drop = FALSE] #variate Y
pp = object$mat.c #matrix of coefficients from the regression of X / residual matrices X on the X-variates, to be used internally by predict.
newdata = as.matrix(newdata)
I=diag(1, nrow=n.comp)
B.hat = array(0, dim = c(p, q, n.comp)) #beta predictor for new data
Y.hat = array(0, dim = c(nrow(newdata), q, n.comp))
#Ww <- X_ww %*% solve(t(pp) %*% X_ww)
Ww <- X_ww %*% MASS::ginv(t(pp) %*% X_ww)
B <- Ww %*% t(Y_ww)
Q <- crossprod(Y, X_sco)
P <- crossprod(X, X_sco)
#Ww.mod <- X_ww %*% solve(t(P) %*% X_ww)
Ww.mod <- X_ww %*% MASS::ginv(t(P) %*% X_ww)
Ypred = lapply(1 : n.comp, function(x){newdata %*% Ww.mod[,1:x] %*% t(Q)[1:x,]})
aux = NULL
for(c in 1:length(Ypred)){
aux = cbind(aux,Ypred[[c]])
}
Ypred = aux
y.center <- attr(Y,"scaled:center")
y.scale <- attr(Y,"scaled:scale")
if(is.null(y.center)){
y.center <- 0
}
if(is.null(y.scale)){
y.scale <- 1
}
predict = Ypred * y.scale + y.center
return(list(predict = predict, B.hat = B))
}
### ## ##
# CLASS #
### ## ##
splsdrcox_penalty_class = function(pls_model, ...) {
model = structure(pls_model, class = pkg.env$model_class,
model = pkg.env$splsdrcox_penalty)
return(model)
}
cv.splsdrcox_penalty_class = function(pls_model, ...) {
model = structure(pls_model, class = pkg.env$model_class,
model = pkg.env$cv.splsdrcox_penalty)
return(model)
}
### ###
# PLS #
### ###
# NA VALUES AS 0, then NA again
pls2 <- function(X, Y, n.comp, x.center = TRUE, x.scale = FALSE, y.center = TRUE, y.scale = FALSE,
it = 500, tol = 1e-20, tol.W.star = 1e-20, verbose = FALSE){
if(n.comp >= nrow(X)) {
n.comp <- qr(X)$rank-1
}
if(is.data.frame(X)) X <- as.matrix(X)
if(is.data.frame(Y)) Y <- as.matrix(Y)
xmeans = NULL
xsds = NULL
ymeans = NULL
ysds = NULL
# Aready centered?
if(is.null(attr(X, "scaled:center")) | !is.null(attr(X, "scaled:scale"))){
# Centering and/or scaling
if(x.center | x.scale){
Xh <- scale(X, center = x.center, scale = x.scale)
if(x.center) xmeans <- attr(Xh, "scaled:center")
if(x.scale) xsds <- attr(Xh, "scaled:scale")
}else{
Xh <- X
}
}else{
Xh <- X
xmeans <- attr(Xh, "scaled:center")
xsds <- attr(Xh, "scaled:scale")
}
if(is.null(attr(Y, "scaled:scale")) | !is.null(attr(Y, "scaled:scale"))){
if(y.center | y.scale){
Yh <- scale(Y, center = y.center, scale = y.scale)
if(y.center) ymeans <- attr(Yh, "scaled:center")
if(y.scale) ysds <- attr(Yh, "scaled:scale")
}else{
Yh <- Y
}
}else{
Yh <- Y
ymeans <- attr(Yh, "scaled:center")
ysds <- attr(Yh, "scaled:scale")
}
Yh_ori <- Yh
Ts <- NULL
W <- NULL
Q <- NULL
U <- NULL
P <- NULL
R <- NULL
C <- NULL
W <- NULL
Wnorm <- NULL
Cnorm <- NULL
XXNA <- is.na(Xh)
Xh[XXNA] = 0
for (h in 1:n.comp) { #for component h to a
perm <- 0
nr <- 0
#1. Select the first u vector with maximum variance in Y
uh = Yh[,max(which(apply(Yh,2,var) == max(apply(Yh,2,var))))] #select only 1 column with max var in Y
ende <- FALSE
while (!ende & nr <= it) { #firs iteration
nr <- nr + 1 #iteration counts
#2. wh = uh'Xh / uh'uh
wh_num <- t(uh) %*% Xh #if any NA, it will be NA
wh_den <- as.vector(t(uh) %*% uh)
wh <- t(wh_num / wh_den)
#3. whn = w' / ||w'||
whn <- wh / as.vector(sqrt(sum(wh^2, na.rm = TRUE)))
#4. t = Xh wh / wh'wh
#4. t = Xh whn
th <- Xh %*% whn
#5. c = t'Yh / t't
#5. q = t'Yh / t't
ch_num <- t(th) %*% Yh
ch_den <- as.vector(t(th) %*% th)
ch <- t(ch_num/ch_den)
chn <- ch / as.vector(sqrt(sum(ch^2, na.rm = TRUE)))
#6. uhnew = Yhc / c'c
#6. uhnew = Yhq / q'q
uhnew_num <- as.numeric(Yh %*% ch)
uhnew_den <- as.numeric(t(ch) %*% ch)
uhnew <- uhnew_num / uhnew_den
deltau <- uhnew - uh
unorm <- sqrt(sum(deltau^2))
if (unorm < tol) {
ende <- TRUE
}
uh <- uhnew
}
#7. ph <- t'X / t't
ph <- t(t(th) %*% Xh / as.vector(t(th) %*% th))
qh <- t(t(uh) %*% Yh / as.vector(t(uh) %*% uh))
rh <- t(uh) %*% th/as.vector(t(th) %*% th)
Xh <- Xh - th %*% t(ph)
Yh <- Yh - th %*% t(ch) * as.vector(rh)
Ts <- cbind(Ts, th)
Q <- cbind(Q, qh)
U <- cbind(U, uh)
P <- cbind(P, ph)
R <- cbind(R, rh)
C <- cbind(C, ch)
W <- cbind(W, wh)
Wnorm <- cbind(Wnorm, whn)
Cnorm <- cbind(Cnorm, chn)
if(is.null(P) | is.null(W)){
message(paste0(pkg.env$splsdrcox_penalty, " model cannot be computed because P or W vectors are NULL. Returning NA."))
# invisible(gc())
return(NA)
}
#system is computationally singular: reciprocal condition number = 6.24697e-18
# PW <- tryCatch(expr = {solve(t(P) %*% W, tol = tol.W.star)},
# error = function(e){
# if(verbose){
# message(e$message)
# }
# NA
# })
PW <- tryCatch(expr = {MASS::ginv(t(P) %*% W)},
error = function(e){
if(verbose){
message(e$message)
}
NA
})
if(all(is.na(PW))){
message(paste0(pkg.env$splsdrcox_penalty, " model cannot be computed due to ginv(t(P) %*% W). Multicollineality could be present in your data. Returning NA."))
# invisible(gc())
return(NA)
}
# What happen when you cannot compute W.star but you have P and W?
W.star <- W %*% PW
}
Xh[XXNA] <- NA
# B <- lapply(1:n.comp, function(x){W.star[,1:x,drop = FALSE] %*% t(C[,1:x,drop = FALSE]) %*% R[,1:x,drop = FALSE]})
# B <- lapply(1:n.comp, function(x){W.star[,1:x,drop = FALSE] %*% t(C[,1:x,drop = FALSE])})
B <- W.star %*% t(C)
Brc <- W.star %*% apply(C, 1, function(x){R * x}) #apply gets the transpose matrix
Bq <- W.star %*% t(Q)
# aux <- NULL
# for(c in 1:length(B)){
# aux <- cbind(aux, B[[c]][,c,drop = FALSE])
# }
# B <- aux
colnames(W) <- paste0("comp_",1:n.comp)
colnames(Wnorm) <- paste0("comp_",1:n.comp)
colnames(W.star) <- paste0("comp_",1:n.comp)
colnames(P) <- paste0("comp_",1:n.comp)
colnames(Ts) <- paste0("comp_",1:n.comp)
colnames(C) <- paste0("comp_",1:n.comp)
colnames(Cnorm) <- paste0("comp_",1:n.comp)
colnames(Q) <- paste0("comp_",1:n.comp)
colnames(U) <- paste0("comp_",1:n.comp)
colnames(R) <- paste0("comp_",1:n.comp)
colnames(B) <- colnames(Brc) <- colnames(Bq) <- "coefficient"
# colnames(B) <- paste0("comp_",1:n.comp)
# colnames(Brc) <- paste0("comp_",1:n.comp)
# colnames(Bq) <- paste0("comp_",1:n.comp)
func_call <- match.call()
list(X = list("data" = Xh,
"weightings" = W,
"weightings_norm" = Wnorm,
"W.star" = W.star,
"loadings" = P,
"scores" = Ts,
"x.mean" = xmeans,
"x.sd" = xsds),
Y = list("data" = Yh_ori,
"weightings" = C,
"weightings_norm" = Cnorm,
"loadings" = Q,
"scores" = U,
"ratio" = R,
"y.mean" = ymeans,
"y.sd" = ysds),
B = B,
Bq = Bq,
Brc = Brc,
n.comp = n.comp, #number of components
call = func_call,
X_input = X,
Y_input = Y)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.