R/WH_train.r

Defines functions WH_train

Documented in WH_train

#'
#' Train weights for WH
#' 
#' Train weights for WH and output weight vector
#'
#' @param X a list of k number of input data, X[[1]] ... X[[k]]. The ith data have sequence information as phyDat format in X[[i]][[1]], and tree information in X[[i]][[2]] as phylo format.
#'
#' @param loc0 weight location of initial state 
#'
#' @param locDropout weight location of dropout state
#' 
#' @param locMissing weight location of missing state, FALSE if there is no missing values 
#' 
#' @return a weight vector
#'
#' @author Il-Youp Kwak (ikwak2@cau.ac.kr)
#' 
#' @export
#'
WH_train <- function(X, loc0 = 2, locDropout = 1, locMissing = FALSE){


    if(locMissing != FALSE) {
        WHfit <- function( Wdropout1, Wdropout2, Wothers ) {
            
            InfoW = rep(1,7)
            InfoW[locDropout] = Wdropout1
            InfoW[loc0] = 1
            InfoW[locMissing] = Wdropout2
            InfoW[4:55] = Wothers
            
            ds = NULL
            for(i in 1:length(X)){
                D_wh = dist_weighted_hamming(X[[i]][[1]], InfoW, dropout = FALSE)
                tree_wh = fastme.bal(D_wh)
                ds = c(ds, -RF.dist(tree_wh, X[[i]][[2]], normalize = TRUE) )
            }    
            
            result = list( Score = mean(ds), Pred = 0 )
            return(result)
            
        }
        
        search_bound <- list(Wdropout1 = c(0.1,2.5),
                             Wdropout2 = c(0.1,2.5),
                             Wothers = c(1, 10)  )
        
        search_grid <- data.frame(Wdropout1 = runif(10, 0.1, 2.5),
                                  Wdropout2 = runif(10, 0.1, 2.5),
                                  Wothers = runif(10, 1, 10))
        
        bayes_WH <- BayesianOptimization(FUN = WHfit, bounds = search_bound,
                                         init_points = 0, init_grid_dt = search_grid,
                                         n_iter = 20, acq = "ucb")
        
        InfoW = rep(1,7)
        InfoW[locDropout] = bayes_WH$Best_Par['Wdropout1']
        InfoW[loc0] = 1
        InfoW[locMissing] = bayes_WH$Best_Par['Wdropout2']
        InfoW[4:55] = bayes_WH$Best_Par['Wothers']
    } else {
        WHfit2 <- function( Wdropout1, Wothers ) {
            
            InfoW = rep(1,7)
            InfoW[locDropout] = Wdropout1
            InfoW[loc0] = 1
            InfoW[3:55] = Wothers
            
            ds = NULL
            for(i in 1:length(X)){
                D_wh = dist_weighted_hamming(X[[i]][[1]], InfoW, dropout = FALSE)
                tree_wh = fastme.bal(D_wh)
                ds = c(ds, -RF.dist(tree_wh, X[[i]][[2]], normalize = TRUE) )
            }    
            
            result = list( Score = mean(ds), Pred = 0 )
            return(result)
            
        }
        
        search_bound <- list(Wdropout1 = c(0.1,2.5),
                             Wothers = c(1, 10)  )
        
        search_grid <- data.frame(Wdropout1 = runif(10, 0.1, 2.5),
                                  Wothers = runif(10, 1, 10))
        
        bayes_WH <- BayesianOptimization(FUN = WHfit2, bounds = search_bound,
                                         init_points = 0, init_grid_dt = search_grid,
                                         n_iter = 20, acq = "ucb")
        
        InfoW = rep(1,7)
        InfoW[locDropout] = bayes_WH$Best_Par['Wdropout1']
        InfoW[loc0] = 1
        InfoW[3:55] = bayes_WH$Best_Par['Wothers']


    }
    
    InfoW
}

Try the DCLEAR package in your browser

Any scripts or data that you put into this service are public.

DCLEAR documentation built on Sept. 5, 2021, 5:21 p.m.