Nothing
## -----------------------------------------------------------------------------------
## Demo file for DescTools; start with 'demo(DescTools)'
## -----------------------------------------------------------------------------------
cat(cli::col_blue(cli::style_bold(" DescTools "), " is a package for descriptive and explorative statistics.
It contains many basic statistic functions, tests and plots complementing
the base R functions' set.
"))
# Describing numeric, factor and binary variables
Desc(d.pizza$temperatur, plotit=TRUE)
Desc(d.pizza$driver, plotit=TRUE)
Desc(d.pizza$wine_ordered)
with(d.pizza, Desc(area ~ operator, verbose=3))
with(d.pizza, Desc(temperature ~ delivery_min, verbose=3))
with(d.pizza, Desc(temperature ~ area, verbose=3))
with(d.pizza, Desc(area ~ temperature, verbose=3))
layout(0)
# Many special plots
with(cars, PlotBag(speed, dist))
PlotArea(WorldPhones, col=Pal("Helsana", alpha =.60), las=1)
PlotLinesA(WorldPhones/1e3, col=Pal("Helsana"), lwd=2,
main="WorldPhones [in 1'000]")
tab <- table(d.pizza$weekday, d.pizza$operator)
par(mfrow=c(1,2))
PlotCirc(tab, main="operator ~ weekday",
acol = c("dodgerblue","seagreen2","limegreen","olivedrab2","goldenrod2","tomato2"),
rcol = SetAlpha(c("red","orange","olivedrab1"), 0.5)
)
PlotCirc(tab, main="operator ~ weekday", acol = Pal("Helsana"))
tab <- matrix(c(2,5,8,3,10,12,5,7,15), nrow=3, byrow=FALSE)
dimnames(tab) <- list(c("A","B","C"), c("D","E","F"))
PlotCirc( tab,
acol = c("dodgerblue","seagreen2","limegreen","olivedrab2","goldenrod2","tomato2"),
rcol = SetAlpha(c("red","orange","olivedrab1"), 0.5)
)
set.seed(1789)
N <- 20
area <- rlnorm(N)
grp <- sample(x=1:3, size=20, replace=TRUE, prob=c(0.2,0.3,0.5))
z <- Sort(data.frame(area=area, grp=grp), c("grp","area"), decreasing=c(FALSE,TRUE))
z$col <- SetAlpha(c("steelblue","green","yellow")[z$grp],
unlist(lapply(split(z$area, z$grp),
function(...) LinScale(..., newlow=0.1, newhigh=0.6))))
PlotTreemap(x=z$area, grp=z$grp, labels=letters[1:20], col=z$col, main="Treemap")
# statistic functions, supporting weights and their confidence intervals
# use weights
x <- sample(20, 30, replace = TRUE)
y <- sample(20, 30, replace = TRUE)
z <- as.numeric(names(w <- table(x)))
fun <- list(mean=Mean, median=Median, "std. deviation"=SD, variance=Var,
"median absolute deviation"=MAD, "mean absolute deviation"=MeanAD,
quantile=Quantile, iqr=IQRw,
skewness=Skew, kurtosis=Kurt)
sapply(fun, function(f) f(x))
# the same using weights
sapply(fun, function(f) f(z, weights=w))
# confidence intervals
MeanCI(x, conf.level = 0.95)
MedianCI(x, conf.level = 0.95)
QuantileCI(x, conf.level = 0.95)
VarCI(x, conf.level = 0.95)
MADCI(x, conf.level = 0.95)
Skew(x, conf.level = 0.95)
Kurt(x, conf.level = 0.95)
x <- sample(5, 30, replace = TRUE)
y <- sample(5, 30, replace = TRUE)
Cor(x, y)
tt <- table(x, y)
ttt <- tt[-2,-2]
cor(x, y)
with(as.data.frame(sapply(Untable(ttt),
function(x) as.numeric(as.character(x)))),
cor(x,y))
cov.wt( cbind(rep(as.numeric(rownames(ttt)), times=nrow(ttt)),
rep(as.numeric(colnames(ttt)), each=ncol(ttt))),
wt=c(ttt), cor = TRUE)$cor[1,2]
# Desc(ttt, verbose = 3)
Assocs(ttt)
# Tables: TOne
TOne(x = d.pizza[,c("temperature", "driver", "rabate")],
grp = d.pizza$area,
align = " ",
total = FALSE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.