R/EasyABC-internal.R

Defines functions .updateProgressBar .progressBar .ABC_mcmc_cluster .ABC_MCMC3_cluster .ABC_MCMC2_cluster .ABC_sequential_cluster .ABC_Lenormand_cluster .ABC_launcher_not_uniformc_uni_cluster .ABC_launcher_not_uniformc_cluster .ABC_rejection_lhs_cluster .ABC_Delmoral_cluster .ABC_rejection_M_cluster .ABC_Drovandi_cluster .move_drovandi_diversify_cluster .move_drovandi_end_cluster .move_drovandi_ini_cluster .ABC_PMC_cluster .ABC_launcher_not_uniform_uni_cluster .ABC_launcher_not_uniform_cluster .ABC_rejection_cluster .ABC_rejection_internal_cluster .ABC_mcmc_internal .ABC_MCMC3 .ABC_MCMC2 .ABC_MCMC .make_proposal_range .move_particle_uni_uniform .ABC_sequential .ABC_sequential_emulator .ABC_sequential_emulation_follow .ABC_sequential_emulation .emulator_locreg_deg2 .predict_locreg_deg2 .tricubic_weight .dist_compute_emulator .ABC_Lenormand .ABC_launcher_not_uniformc .compute_weightb_uni .compute_weightb .ABC_rejection_lhs .all_unif .ABC_Delmoral .replicate_tab .particle_pick_delmoral .compute_below .compute_ESS .compute_weight_delmoral .compute_dist_M .ABC_rejection_M .ABC_Drovandi .selec_simulb .selec_simul_alpha .ABC_PMC .ABC_rejection .ABC_launcher_not_uniform_uni .compute_weight_uni .move_particleb_uni .move_particle_uni .compute_weight .compute_weight_prior_tab .compute_weight_prior .ABC_rejection_internal .sample_prior .is_in_parameter_constraints .check_prior_test .move_particleb .move_particle .is_included .particle_pick .selec_simul .compute_dist .wrap_constants_in_model .process_prior .create_legacy_prior .create_dynamic_prior

####################### INTERNAL FUNCTIONS

## Priors functions handling
.create_dynamic_prior = function(sampleName, sampleArgs, densityName, densityArgs, 
    isUniform = FALSE) {
    # $sampling: sample function with the given arguments. The used function (given
    # by 'name' argument) takes the arguments 'args' for generating a sample.
    # $density: create the density function with the given arguments. The used
    # function (given by 'name' argument) takes as arguments the quantile value and
    # the given 'args' for computing the density.  $isUniform: indicates if this
    # prior follows an uniform distribution (condition for methods that need LHS)
    list(sampling = function() {
        do.call(sampleName, as.list(as.numeric(sampleArgs)))
    }, density = function(value) {
        do.call(densityName, as.list(as.numeric(c(value, densityArgs))))
    }, isUniform = isUniform || sampleName == "runif", sampleArgs = sampleArgs)
}
# Legacy functions keeped for compatibility with older versions and easyness
.create_legacy_prior = function(name, args) {
    name = name
    args = args
    switch(EXPR = name, unif = .create_dynamic_prior("runif", c(1, args), "dunif", 
        args, TRUE), normal = .create_dynamic_prior("rnorm", c(1, args), "dnorm", 
        args, TRUE), lognormal = .create_dynamic_prior("rlnorm", c(1, args), "dlnorm", 
        args, TRUE), exponential = .create_dynamic_prior("rexp", c(1, args), "dexp", 
        args, TRUE))
}
# Process the priors specifications and return a list when each element contains
# the sample function and the density function
.process_prior = function(prior) {
    if (!is.list(prior)) 
        stop("'prior' has to be a list")
    l = length(prior)
    new_prior = list()
    for (i in 1:l) {
        if (is.list(prior[[i]][1])) {
            if (length(prior[[i]]) != 2) {
                stop(paste("Incorrect prior specification for '", prior[[i]], "'. Please refer to the documentation.", 
                  sep = ""))
            }
            new_prior[[i]] = .create_dynamic_prior(prior[[i]][[1]][1], prior[[i]][[1]][-1], 
                prior[[i]][[2]][1], prior[[i]][[2]][-1])
        } else {
            if (any(prior[[i]][1] == c("unif", "normal", "lognormal", "exponential"))) {
                if (prior[[i]][1] == "exponential") {
                  if (length(prior[[i]]) != 2) {
                    stop(paste("Incomplete prior information for parameter ", i, 
                      sep = ""))
                  }
                } else {
                  if (length(prior[[i]]) != 3) {
                    stop(paste("Incomplete prior information for parameter ", i, 
                      sep = ""))
                  }
                }
                new_prior[[i]] = .create_legacy_prior(prior[[i]][1], prior[[i]][-1])
            } else {
                stop(paste("Only the methods 'unif', 'normal, 'lognormal' and 'exponential' are wrapped in EasyABC, unknown function '", 
                  prior[[i]][1], "'. Please refer to the documention for specifying your prior.", 
                  sep = ""))
            }
        }
    }
    new_prior
}

.wrap_constants_in_model = function(prior, model, use_seed) {
    nb_parameters = length(prior)
    # detecting constants defined as c('unif',value,value)
    constants_mask = array(FALSE, nb_parameters)
    constants_values = list()
    for (i in 1:nb_parameters) {
        if ((prior[[i]][1] == "unif") && (as.numeric(prior[[i]][2]) == as.numeric(prior[[i]][3]))) {
            constants_mask[i] = TRUE
            constants_values = append(constants_values, as.numeric(prior[[i]][2]))
        }
    }
    constants_values = unlist(constants_values)
    new_prior = prior[!constants_mask]
    if (use_seed) {
        constants_mask = c(FALSE, constants_mask)
        nb_parameters = nb_parameters + 1
    }
    old_model = model
    # returning the prior without constants, and a new function that wraps the model
    # with the constants
    list(new_prior = new_prior, new_model = function(parameters) {
        param_with_constants = array(0, nb_parameters)
        param_with_constants[constants_mask] = constants_values
        param_with_constants[!constants_mask] = parameters
        old_model(param_with_constants)
    })
}

## function to compute a distance between a matrix of simulated statistics (row:
## different simulations, columns: different summary statistics) and the array of
## data summary statistics
.compute_dist <- function(summary_stat_target, simul, sd_simul, dist_weights=NULL) {
    l = length(summary_stat_target)
    # If simul is not a matrix (which happens when l == 1) we tranform it into a
    # matrix
    if (!is.matrix(simul)) {
        if (length(summary_stat_target) == 1) {
            simul <- matrix(simul, length(simul), 1)
        } else {
            simul <- matrix(simul, 1, length(simul))
        }
    }
    dist=NULL
    if (!is.null(dist_weights)) {
        for (i in 1:l){
            dist = dist + (simul[,i] - summary_stat_target[i]) * (simul[,i] - summary_stat_target[i]) * (dist_weights[i]/sum(dist_weights))
        }
    } else {
        vartab = sd_simul^2
        # Ensure positivity of variances: the elements of vartab that are close to zero
        # are set to one
        vartab[vartab == 0] = 1
        dist=colSums((t(simul) - as.vector(summary_stat_target))^2/as.vector(vartab))
    }
    dist
}

## function to select the simulations that are at a distance smaller than tol from
## the data
.selec_simul <- function(summary_stat_target, param, simul, sd_simul, tol, dist_weights) {
    dist = .compute_dist(summary_stat_target, simul, sd_simul, dist_weights=dist_weights)
    ll = length(dist[dist < tol])
    # select data with type checking
    select_data = function(data) {
        dd = dim(data)[1]
        if (!is.null(dd)) {
            if (ll > 1) {
                result = data[dist < tol, ]
            } else {
                if (ll == 1) {
                  result = as.matrix(data[dist < tol, ])
                  dim(result) = c(dim(result)[2], dim(result)[1])
                } else {
                  result = NULL
                }
            }
        } else {
            if (ll >= 1) {
                result = as.matrix(data[dist < tol])
            } else {
                result = NULL
            }
        }
        result
    }
    param2 = select_data(param)
    simul2 = select_data(simul)
    cbind(param2, simul2)
}

## function to randomly pick a particle from a weighted array (of sum=1)
.particle_pick <- function(param, tab_weight) {
    weight_cum = cumsum(tab_weight/sum(tab_weight))
    pos = 1:length(tab_weight)
    p = min(pos[weight_cum > runif(1)])
    res = NULL
    if (!is.null(dim(param)[1])) {
        res = param[p, ]
    } else {
        res = param[p]
    }
    res
}

## function to check whether moved parameters are still in the prior distribution
.is_included <- function(res, prior) {
    test = TRUE
    for (i in 1:length(prior)) {
        test = test && (prior[[i]]$density(res[i]) > 0)
    }
    test
}

## function to move a particle
.move_particle <- function(param_picked, varcov_matrix) {
    # library(mnormt)
    rmnorm(n = 1, mean = param_picked, varcov_matrix)
}

## function to move a particle
.move_particleb <- function(param_picked, varcov_matrix, prior, max_pick=10000) {
    # with package mnormt library(mnormt)
    test = FALSE
    counter = 0
    while ((!test) && (counter < max_pick)) {
        counter = counter + 1
        res = rmnorm(n = 1, mean = param_picked, varcov_matrix)
        test = .is_included(res, prior)
    }
    if (counter == max_pick) {
        stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
    }
    res
}

## return if the prior_test use correct parameter names, stop if there is an error
.check_prior_test <- function(nb_parameters, prior_test) {
    m = gregexpr("[xX]([0-9])+", prior_test)
    result = regmatches(prior_test, m)
    for (i in 1:length(result[[1]])) {
        parameter_index = substring(result[[1]][i], 2)
        if (parameter_index > nb_parameters) {
            stop(paste("Parameter out of range: ", result[[1]][i], sep = ""))
        }
    }
    TRUE
}

## test if the sampled parameter is passing the constraint test (if given by user)
.is_in_parameter_constraints <- function(parameter, test) {
    is.null(test) || eval(parse(text = gsub("[xX]([0-9]+)", "parameter[\\1]", test)))
}

## sample according to the prior definition, a test can be given as 'x1 < x2'
.sample_prior <- function(prior, test) {
    l = length(prior)
    param = NULL
    test_passed = FALSE
    while (!test_passed) {
        for (i in 1:l) {
            param[i] = prior[[i]]$sampling()
        }
        test_passed = .is_in_parameter_constraints(param, test)
    }
    param
}

.ABC_rejection_internal <- function(model, prior, prior_test, nb_simul, use_seed, 
    seed_count, verbose = FALSE, progressbarwidth = 0) {
    options(scipen = 50)
    tab_simul_summarystat = NULL
    tab_param = NULL
    pb = NULL
    if (progressbarwidth > 0) {
        pb = .progressBar(width = progressbarwidth)
    }
    if (verbose) {
        write.table(NULL, file = "output", row.names = F, col.names = F, quote = F)
    }
    l = length(prior)
    start = Sys.time()
    for (i in 1:nb_simul) {
        param = .sample_prior(prior, prior_test)
        if (use_seed) {
            param = c((seed_count + i), param)
        }
        simul_summarystat = model(param)
        tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(simul_summarystat))
        if (use_seed) {
            tab_param = rbind(tab_param, param[2:(l + 1)])
            if (verbose) {
                intermed = c(param[2:(l + 1)], simul_summarystat)
                write(intermed, file = "output", ncolumns = length(intermed), append = T)
            }
        } else {
            tab_param = rbind(tab_param, param)
            if (verbose) {
                intermed = c(param, simul_summarystat)
                write(intermed, file = "output", ncolumns = length(intermed), append = T)
            }
        }
        if (!is.null(pb)) {
            duration = difftime(Sys.time(), start, units = "secs")
            text = ""
            if (i == nb_simul) {
                text = paste("Completed  in", format(.POSIXct(duration, tz = "GMT"), 
                  "%H:%M:%S"), "                                              ")
            } else {
                text = paste("Time elapsed:", format(.POSIXct(duration, tz = "GMT"), 
                  "%H:%M:%S"), "Estimated time remaining:", format(.POSIXct(duration/i * 
                  (nb_simul - i), tz = "GMT"), "%H:%M:%S"))
            }
            .updateProgressBar(pb, i/nb_simul, text)
        }
    }
    if (!is.null(pb)) {
        close(pb)
    }
    options(scipen = 0)
    list(param = as.matrix(tab_param), summarystat = as.matrix(tab_simul_summarystat), 
        start = start)
}

## function to compute particle weights
.compute_weight_prior <- function(particle, prior) {
    res = 1
    for (i in 1:length(prior)) {
        res = res * prior[[i]]$density(particle[i])
    }
    res
}

.compute_weight_prior_tab <- function(particle, prior) {
    l = dim(particle)[1]
    res = array(0, l)
    for (i in 1:l) {
        res[i] = .compute_weight_prior(particle[i, ], prior)
    }
    res
}

.compute_weight <- function(param_simulated, param_previous_step, tab_weight, prior) {
    vmat = as.matrix(2 * cov.wt(as.matrix(param_previous_step), as.vector(tab_weight))$cov)
    n_particle = dim(param_previous_step)[1]
    n_new_particle = dim(param_simulated)[1]
    l = dim(param_previous_step)[2]
    if (is.null(n_particle)) {
        n_particle = length(param_previous_step)
        n_new_particle = length(param_simulated)
        l = 1
    }
    tab_weight_new = array(0, n_new_particle)
    invmat = 0.5 * solve(vmat)
    for (i in 1:n_particle) {
        for (k in 1:n_new_particle) {
            if (l > 1) {
                temp = as.numeric(param_simulated[k, ]) - param_previous_step[i, 
                  ]
                tab_weight_new[k] = tab_weight_new[k] + tab_weight[i] * as.numeric(exp(-t(temp) %*% 
                  invmat %*% temp))
            } else {
                temp = as.numeric(param_simulated[k]) - param_previous_step[i]
                tab_weight_new[k] = tab_weight_new[k] + tab_weight[i] * as.numeric(exp(-t(temp) %*% 
                  invmat %*% temp))
            }
        }
    }
    tab_weight_prior = .compute_weight_prior_tab(param_simulated, prior)
    tab_weight_new = tab_weight_prior/tab_weight_new
    tab_weight_new/sum(tab_weight_new)
}

## function to move a particle with a unidimensional normal jump
.move_particle_uni <- function(param_picked, sd_array) {
    res = param_picked
    for (i in 1:length(param_picked)) {
        res[i] = rnorm(n = 1, mean = param_picked[i], sd_array[i])
    }
    res
}

## function to move a particle with a unidimensional normal jump
.move_particleb_uni <- function(param_picked, sd_array, prior, max_pick=10000) {
    test = FALSE
    res = param_picked
    counter = 0
    while ((!test) && (counter < max_pick)) {
        counter = counter + 1
        for (i in 1:length(param_picked)) {
            res[i] = rnorm(n = 1, mean = param_picked[i], sd_array[i])
        }
        test = .is_included(res, prior)
    }
    if (counter == max_pick) {
        stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
    }
    res
}

## function to compute particle weights with unidimensional jumps
.compute_weight_uni <- function(param_simulated, param_previous_step, tab_weight, 
    prior) {
    l = dim(param_previous_step)[2]
    if (!is.null(l)) {
        n_particle = dim(param_previous_step)[1]
        n_new_particle = dim(param_simulated)[1]
        var_array = array(1, l)
        multi = (1/sqrt(2 * pi))^l
        for (j in 1:l) {
            var_array[j] = 4 * diag(cov.wt(as.matrix(param_previous_step[, j]), as.vector(tab_weight))$cov)  # computation of a WEIGHTED variance
            multi = multi * (1/sqrt(var_array[j]/2))
        }
    } else {
        l = 1
        n_particle = length(param_previous_step)
        n_new_particle = length(param_simulated)
        multi = (1/sqrt(2 * pi))
        var_array = 4 * diag(cov.wt(as.matrix(param_previous_step), as.vector(tab_weight))$cov)  # computation of a WEIGHTED variance
        multi = multi * (1/sqrt(var_array/2))
    }
    var_array = as.numeric(var_array)
    tab_weight_new = array(0, n_new_particle)
    for (i in 1:n_particle) {
        tab_temp = array(tab_weight[i] * multi, n_new_particle)
        if (l > 1) {
            for (k in 1:l) {
                tab_temp = tab_temp * exp(-(as.numeric(param_simulated[, k]) - as.numeric(param_previous_step[i, 
                  k])) * (as.numeric(param_simulated[, k]) - as.numeric(param_previous_step[i, 
                  k]))/var_array[k])
            }
        } else {
            tab_temp = tab_temp * exp(-(as.numeric(param_simulated) - as.numeric(param_previous_step[i])) * 
                (as.numeric(param_simulated) - as.numeric(param_previous_step[i]))/var_array)
        }
        tab_weight_new = tab_weight_new + tab_temp
    }
    tab_weight_prior = .compute_weight_prior_tab(param_simulated, prior)
    tab_weight_new = tab_weight_prior/tab_weight_new
    tab_weight_new/sum(tab_weight_new)
}

## function to perform ABC simulations from a non-uniform prior and with
## unidimensional jumps
.ABC_launcher_not_uniform_uni <- function(model, prior, param_previous_step, tab_weight, 
    nb_simul, use_seed, seed_count, inside_prior, max_pick=10000) {
    tab_simul_summarystat = NULL
    tab_param = NULL
    l = dim(param_previous_step)[2]
    lp = 1
    if (is.null(l)) {
        lp = 0
        l = length(param_previous_step)
        covmat = 2 * cov.wt(as.matrix(param_previous_step), as.vector(tab_weight))$cov  # computation of a WEIGHTED variance
    } else {
        covmat = 2 * cov.wt(as.matrix(param_previous_step), as.vector(tab_weight))$cov  # computation of a WEIGHTED variance
    }
    l_array = dim(param_previous_step)[2]
    if (is.null(l_array)) {
        l_array = 1
    }
    sd_array = array(1, l_array)
    for (j in 1:l_array) {
        sd_array[j] = sqrt(covmat[j, j])
    }
    for (i in 1:nb_simul) {
        if (!inside_prior) {
            # pick a particle
            if (lp == 0) {
                param_picked = .particle_pick(as.matrix(param_previous_step), tab_weight)
            } else {
                param_picked = .particle_pick(as.matrix(param_previous_step), tab_weight)
            }
            # move it
            if (lp == 0) {
                param_moved = .move_particle_uni(as.numeric(param_picked), sd_array)  # only variable parameters are moved
            } else {
                param_moved = .move_particle_uni(as.numeric(param_picked), sd_array)  # only variable parameters are moved
            }
        } else {
            test = FALSE
            counter = 0
            while ((!test) && (counter < max_pick)) {
                counter = counter + 1
                # pick a particle
                if (lp == 0) {
                  param_picked = .particle_pick(param_previous_step, tab_weight)
                } else {
                  param_picked = .particle_pick(param_previous_step, tab_weight)
                }
                # move it
                if (lp == 0) {
                  param_moved = .move_particle_uni(as.numeric(param_picked), sd_array)  # only variable parameters are moved
                  test = .is_included(param_moved, prior)
                } else {
                  param_moved = .move_particle_uni(as.numeric(param_picked), sd_array)  # only variable parameters are moved
                  test = .is_included(param_moved, prior)
                }
            }
            if (counter == max_pick) {
                stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
            }
        }
        if (lp == 0) {
            param = param_previous_step[1]
        } else {
            param = param_previous_step[1, ]
        }
        param = param_moved
        if (use_seed) {
            param = c((seed_count + i), param)
        }
        simul_summarystat = model(param)
        tab_simul_summarystat = rbind(tab_simul_summarystat, simul_summarystat)
        if (use_seed) {
            tab_param = rbind(tab_param, param[2:(l + 1)])
        } else {
            tab_param = rbind(tab_param, param)
        }
    }
    cbind(tab_param, tab_simul_summarystat)
}

## FUNCTION ABC_rejection: brute-force ABC (Pritchard et al. 1999)
.ABC_rejection <- function(model, prior, prior_test, nb_simul, use_seed, seed_count, 
    verbose, progress_bar) {
    nb_simul = floor(nb_simul)
    seed_count = floor(seed_count)
    pgwidth = 0
    if (progress_bar) {
        pgwidth = 50
    }
    rejection = .ABC_rejection_internal(model, prior, prior_test, nb_simul, use_seed, 
        seed_count, verbose, progressbarwidth = pgwidth)
    sd_simul = sapply(as.data.frame(rejection$summarystat), sd)
    list(param = rejection$param, stats = as.matrix(rejection$summarystat), weights = array(1/nb_simul, 
        nb_simul), stats_normalization = as.numeric(sd_simul), nsim = nb_simul, computime = as.numeric(difftime(Sys.time(), 
        rejection$start, units = "secs")))
}

## PMC ABC algorithm: Beaumont et al. Biometrika 2009
.ABC_PMC <- function(model, prior, prior_test, nb_simul, summary_stat_target, use_seed, 
    verbose, dist_weights=NULL, seed_count = 0, inside_prior = TRUE, tolerance_tab = -1, progress_bar = FALSE, max_pick=10000) {
    ## checking errors in the inputs
    if (!is.vector(seed_count)) 
        stop("'seed_count' has to be a number.")
    if (length(seed_count) > 1) 
        stop("'seed_count' has to be a number.")
    if (seed_count < 0) 
        stop("'seed_count' has to be a positive number.")
    seed_count = floor(seed_count)
    if (!is.logical(inside_prior)) 
        stop("'inside_prior' has to be boolean.")
    if (!is.vector(tolerance_tab)) 
        stop("'tolerance_tab' has to be a vector.")
    if (tolerance_tab[1] == -1) 
        stop("'tolerance_tab' is missing")
    if (min(tolerance_tab) <= 0) 
        stop("tolerance values have to be strictly positive.")
    lll = length(tolerance_tab)
    if (lll <= 1) 
        stop("at least two tolerance values need to be provided.")
    if (min(tolerance_tab[1:(lll - 1)] - tolerance_tab[2:lll]) <= 0) 
        stop("tolerance values have to decrease.")
    if (!is.logical(progress_bar)) 
        stop("'progress_bar' has to be boolean.")
    if (progress_bar) {
        print("    ------ Beaumont et al. (2009)'s algorithm ------")
    }
    start = Sys.time()
    seed_count_ini = seed_count
    T = length(tolerance_tab)
    nparam = length(prior)
    if (is.null(nparam)) {
        nparam = 1
    }
    nstat = length(summary_stat_target)
    ## step 1
    nb_simul_step = nb_simul
    simul_below_tol = NULL
    while (nb_simul_step > 0) {
        if (nb_simul_step > 1) {
            # classic ABC step
            tab_ini = .ABC_rejection_internal(model, prior, prior_test, nb_simul_step, 
                use_seed, seed_count)
            if (nb_simul_step == nb_simul) {
                sd_simul = sapply(as.data.frame(tab_ini$summarystat), sd)  # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
            }
            seed_count = seed_count + nb_simul_step
            # selection of simulations below the first tolerance level
            simul_below_tol = rbind(simul_below_tol, .selec_simul(summary_stat_target, 
                tab_ini$param, tab_ini$summarystat, sd_simul, tolerance_tab[1], dist_weights=dist_weights))
            if (length(simul_below_tol) > 0) {
                nb_simul_step = nb_simul - dim(simul_below_tol)[1]
            }
        } else {
            tab_ini = .ABC_rejection_internal(model, prior, prior_test, nb_simul_step, 
                use_seed, seed_count)
            seed_count = seed_count + nb_simul_step
            if (.compute_dist(summary_stat_target, tab_ini$summarystat, sd_simul, dist_weights=dist_weights) < 
                tolerance_tab[1]) {
                simul_below_tol = rbind(simul_below_tol, cbind(tab_ini$param, tab_ini$summarystat))
                nb_simul_step = 0
            }
        }
    }  # until we get nb_simul simulations below the first tolerance threshold
    # initially, weights are equal
    tab_weight = array(1/nb_simul, nb_simul)
    intermediary_steps = list(NULL)
    if (verbose == TRUE) {
        write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = "output_step1", 
            row.names = F, col.names = F, quote = F)
        write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1", 
            row.names = F, col.names = F, quote = F)
        intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - seed_count_ini), 
            posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
    }
    if (progress_bar) {
        print("step 1 completed")
    }
    ## steps 2 to T
    for (it in 2:T) {
        nb_simul_step = nb_simul
        simul_below_tol2 = NULL
        while (nb_simul_step > 0) {
            if (nb_simul_step > 1) {
                # Sampling of parameters around the previous particles
                tab_ini = .ABC_launcher_not_uniform_uni(model, prior, as.matrix(simul_below_tol[, 
                  1:nparam]), tab_weight, nb_simul_step, use_seed, seed_count, inside_prior, max_pick)
                seed_count = seed_count + nb_simul_step
                simul_below_tol2 = rbind(simul_below_tol2, .selec_simul(summary_stat_target, 
                  tab_ini[, 1:nparam], tab_ini[, (nparam + 1):(nparam + nstat)], 
                  sd_simul, tolerance_tab[it], dist_weights=dist_weights))
                if (length(simul_below_tol2) > 0) {
                  nb_simul_step = nb_simul - dim(simul_below_tol2)[1]
                }
            } else {
                tab_ini = .ABC_launcher_not_uniform_uni(model, prior, as.matrix(simul_below_tol[, 
                  1:nparam]), tab_weight, nb_simul_step, use_seed, seed_count, inside_prior, max_pick)
                seed_count = seed_count + nb_simul_step
                if (.compute_dist(summary_stat_target, tab_ini[(nparam + 1):(nparam + 
                  nstat)], sd_simul, dist_weights=dist_weights) < tolerance_tab[it]) {
                  simul_below_tol2 = rbind(simul_below_tol2, tab_ini)
                  nb_simul_step = 0
                }
            }
        }  # until we get nb_simul simulations below the it-th tolerance threshold
        # update of particle weights
        tab_weight2 = .compute_weight_uni(as.matrix(as.matrix(simul_below_tol2[, 
            1:nparam])), as.matrix(as.matrix(simul_below_tol[, 1:nparam])), tab_weight, 
            prior)
        # update of the set of particles and of the associated weights for the next ABC
        # sequence
        tab_weight = tab_weight2
        simul_below_tol = matrix(0, nb_simul, (nparam + nstat))
        for (i1 in 1:nb_simul) {
            for (i2 in 1:(nparam + nstat)) {
                simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[i1, i2])
            }
        }
        if (verbose == TRUE) {
            write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = paste("output_step", 
                it, sep = ""), row.names = F, col.names = F, quote = F)
            write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step", 
                it, sep = ""), row.names = F, col.names = F, quote = F)
            intermediary_steps[[it]] = list(n_simul_tot = as.numeric(seed_count - 
                seed_count_ini), posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
        }
        if (progress_bar) {
            print(paste("step ", it, " completed", sep = ""))
        }
    }
    final_res = NULL
    if (verbose == TRUE) {
        final_res = list(param = as.matrix(simul_below_tol[, 1:nparam]), stats = as.matrix(simul_below_tol[, 
            (nparam + 1):(nparam + nstat)]), weights = tab_weight/sum(tab_weight), 
            stats_normalization = as.numeric(sd_simul), epsilon = max(.compute_dist(summary_stat_target, 
                as.matrix(simul_below_tol[, (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), 
            nsim = (seed_count - seed_count_ini), computime = as.numeric(difftime(Sys.time(), 
                start, units = "secs")), intermediary = intermediary_steps)
    } else {
        final_res = list(param = as.matrix(simul_below_tol[, 1:nparam]), stats = as.matrix(simul_below_tol[, 
            (nparam + 1):(nparam + nstat)]), weights = tab_weight/sum(tab_weight), 
            stats_normalization = as.numeric(sd_simul), epsilon = max(.compute_dist(summary_stat_target, 
                as.matrix(simul_below_tol[, (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), 
            nsim = (seed_count - seed_count_ini), computime = as.numeric(difftime(Sys.time(), 
                start, units = "secs")))
    }
    final_res
}

## function to select the alpha quantile closest simulations
.selec_simul_alpha <- function(summary_stat_target, param, simul, sd_simul, alpha, dist_weights) {
    dist = .compute_dist(summary_stat_target, simul, sd_simul, dist_weights=dist_weights)
    n_alpha = ceiling(alpha * length(dist))
    tol = sort(dist)[n_alpha]
    ll = length(dist[!is.na(dist) & dist < tol])
    if (ll == 0) {
        param2 = NULL
        simul2 = NULL
    } else {
        if (!is.null(dim(param)[1])) {
            if (ll > 1) {
                param2 = param[!is.na(dist) & dist <= tol, ]
            } else {
                param2 = as.matrix(param[!is.na(dist) & dist <= tol, ])
                dim(param2) = c(dim(param2)[2], dim(param2)[1])
            }
        } else {
            param2 = as.matrix(param[!is.na(dist) & dist <= tol])
        }
        if (!is.null(dim(simul)[1])) {
            if (ll > 1) {
                simul2 = simul[!is.na(dist) & dist <= tol, ]
            } else {
                simul2 = as.matrix(simul[!is.na(dist) & dist <= tol, ])
                dim(simul2) = c(dim(simul2)[2], dim(simul2)[1])
            }
        } else {
            simul2 = as.matrix(simul[!is.na(dist) & dist <= tol])
        }
    }
    cbind(param2, simul2)
}

## function to select the simulations that are at a distance smaller are equal to
## tol from the data
.selec_simulb <- function(summary_stat_target, param, simul, sd_simul, tol, dist_weights) {
    dist = .compute_dist(summary_stat_target, simul, sd_simul, dist_weights=dist_weights)
    ll = length(dist[dist <= tol])
    if (ll == 0) {
        param2 = NULL
        simul2 = NULL
    } else {
        if (!is.null(dim(param)[1])) {
            if (ll > 1) {
                param2 = param[dist <= tol, ]
            } else {
                param2 = as.matrix(param[dist <= tol, ])
                dim(param2) = c(dim(param2)[2], dim(param2)[1])
            }
        } else {
            param2 = as.matrix(param[dist <= tol])
        }
        if (!is.null(dim(simul)[1])) {
            if (ll > 1) {
                simul2 = simul[dist <= tol, ]
            } else {
                simul2 = as.matrix(simul[dist <= tol, ])
                dim(simul2) = c(dim(simul2)[2], dim(simul2)[1])
            }
        } else {
            simul2 = as.matrix(simul[dist <= tol])
        }
    }
    cbind(param2, simul2)
}

## sequential algorithm of Drovandi & Pettitt 2011 - the proposal used is a
## multivariate normal (cf paragraph 2.2 - p. 227 in Drovandi & Pettitt 2011)
.ABC_Drovandi <- function(model, prior, prior_test, nb_simul, summary_stat_target, 
    use_seed, verbose, tolerance_tab = -1, alpha = 0.5, c = 0.01, first_tolerance_level_auto = TRUE, 
    dist_weights=NULL, seed_count = 0, progress_bar = FALSE, max_pick=10000) {
    ## checking errors in the inputs
    if (!is.vector(tolerance_tab)) 
        stop("'tolerance_tab' has to be a vector.")
    if (tolerance_tab[1] == -1) 
        stop("'tolerance_tab' is missing")
    if (min(tolerance_tab) <= 0) 
        stop("'tolerance values have to be strictly positive.")
    lll = length(tolerance_tab)
    if (lll > 1) {
        if (min(tolerance_tab[1:(lll - 1)] - tolerance_tab[2:lll]) <= 0) 
            stop("'tolerance values have to decrease.")
    }
    if (!is.vector(alpha)) 
        stop("'alpha' has to be a number.")
    if (length(alpha) > 1) 
        stop("'alpha' has to be a number.")
    if (alpha <= 0) 
        stop("'alpha' has to be between 0 and 1.")
    if (alpha >= 1) 
        stop("'alpha' has to be between 0 and 1.")
    if (!is.vector(c)) 
        stop("'c' has to be a vector.")
    if (length(c) > 1) 
        stop("'c' has to be a number.")
    if (c <= 0) 
        stop("'c' has to be between 0 and 1.")
    if (c >= 1) 
        stop("'c' has to be between 0 and 1.")
    if (!is.logical(first_tolerance_level_auto)) 
        stop("'first_tolerance_level_auto' has to be boolean.")
    if (!is.vector(seed_count)) 
        stop("'seed_count' has to be a number.")
    if (length(seed_count) > 1) 
        stop("'seed_count' has to be a number.")
    if (seed_count < 0) 
        stop("'seed_count' has to be a positive number.")
    seed_count = floor(seed_count)
    if (!is.logical(progress_bar)) 
        stop("'progress_bar' has to be boolean.")
    start = Sys.time()
    progressbarwidth = 0
    if (progress_bar) {
        print("    ------ Drovandi & Pettitt (2011)'s algorithm ------")
        progressbarwidth = 50
    }
    seed_count_ini = seed_count
    n_alpha = ceiling(nb_simul * alpha)
    nparam = length(prior)
    if (is.null(nparam)) {
        nparam = 1
    }
    nstat = length(summary_stat_target)
    if (first_tolerance_level_auto) {
        tol_end = tolerance_tab[1]
    } else {
        tol_end = tolerance_tab[2]
    }
    if (progress_bar) {
        print(paste("targetted tolerance = ", tol_end, sep = ""))
    }
    ## step 1
    nb_simul_step = ceiling(nb_simul/(1 - alpha))
    simul_below_tol = NULL
    if (first_tolerance_level_auto) {
        # classic ABC step
        tab_ini = .ABC_rejection_internal(model, prior, prior_test, nb_simul_step, 
            use_seed, seed_count, progressbarwidth)
        sd_simul = sapply(as.data.frame(tab_ini$summarystat), sd)  # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
        seed_count = seed_count + nb_simul_step
        # selection of simulations below the first tolerance level
        simul_below_tol = rbind(simul_below_tol, .selec_simul_alpha(summary_stat_target, 
            tab_ini$param, tab_ini$summarystat, sd_simul, (1 - alpha), dist_weights=dist_weights))
        simul_below_tol = as.matrix(simul_below_tol[1:nb_simul, ])  # to be sure that there are not two or more simulations at a distance equal to the tolerance determined by the quantile
    } else {
        nb_simul_step = nb_simul
        while (nb_simul_step > 0) {
            if (nb_simul_step > 1) {
                # classic ABC step
                tab_ini = .ABC_rejection_internal(model, prior, prior_test, nb_simul_step, 
                  use_seed, seed_count)
                if (nb_simul_step == nb_simul) {
                  sd_simul = sapply(as.data.frame(tab_ini$summarystat), sd)  # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
                }
                seed_count = seed_count + nb_simul_step
                # selection of simulations below the first tolerance level
                simul_below_tol = rbind(simul_below_tol, .selec_simulb(summary_stat_target, 
                  tab_ini$param, tab_ini$summarystat, sd_simul, tolerance_tab[1], dist_weights=dist_weights))  # we authorize the simulation to be equal to the tolerance level, for consistency with the quantile definition of the tolerance
                if (length(simul_below_tol) > 0) {
                  nb_simul_step = nb_simul - dim(simul_below_tol)[1]
                }
            } else {
                tab_ini = .ABC_rejection_internal(model, prior, prior_test, nb_simul_step, 
                  use_seed, seed_count)
                seed_count = seed_count + nb_simul_step
                if (.compute_dist(summary_stat_target, tab_ini$summarystat, sd_simul, dist_weights=dist_weights) <= 
                  tolerance_tab[1]) {
                  simul_below_tol = rbind(simul_below_tol, cbind(tab_ini$param, tab_ini$summarystat))
                  nb_simul_step = 0
                }
            }
        }  # until we get nb_simul simulations below the first tolerance threshold
    }
    # initially, weights are equal
    tab_weight = array(1/nb_simul, nb_simul)
    intermediary_steps = list(NULL)
    if (verbose == TRUE) {
        write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = "output_step1", 
            row.names = F, col.names = F, quote = F)
        write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1", 
            row.names = F, col.names = F, quote = F)
        intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - seed_count_ini), 
            posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
    }
    if (progress_bar) {
        print("step 1 completed")
    }
    ## following steps until tol_end is reached
    tol_next = tolerance_tab[1]
    if (first_tolerance_level_auto) {
        tol_next = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
            (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights))
    }
    R = 1
    l = dim(simul_below_tol)[2]
    it = 1
    while (tol_next > tol_end) {
        it = it + 1
        i_acc = 0
        nb_simul_step = n_alpha
        # compute epsilon_next
        tol_next = sort(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
            (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights))[(nb_simul - n_alpha)]
        # drop the n_alpha poorest particles
        simul_below_tol2 = .selec_simulb(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
            1:nparam]), as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + 
            nstat)]), sd_simul, tol_next, dist_weights=dist_weights)  # we authorize the simulation to be equal to the tolerance level, for consistency with the quantile definition of the tolerance
        simul_below_tol = matrix(0, (nb_simul - n_alpha), (nparam + nstat))
        for (i1 in 1:(nb_simul - n_alpha)) {
            for (i2 in 1:(nparam + nstat)) {
                simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[i1, i2])
            }
        }
        simul_below_tol2 = NULL
        startb = Sys.time()
        # progress bar
        pb = NULL
        if (progress_bar) {
            pb <- .progressBar(width = 50)
        }
        duration = 0
        for (i in 1:nb_simul_step) {
            # pick a particle
            simul_picked = .particle_pick(simul_below_tol, tab_weight[1:(nb_simul - 
                n_alpha)])
            for (j in 1:R) {
                # move it
                param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(simul_below_tol[, 
                  1:nparam]))), prior, max_pick)
                param = simul_picked[1:nparam]
                param = param_moved
                if (use_seed) {
                  param = c((seed_count + j), param)
                }
                # perform a simulation
                new_simul = c(param, model(param))
                if (use_seed) {
                  new_simul = new_simul[2:(l + 1)]
                }
                # check whether it is below tol_next and undo the move if it is not
                if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam + 
                  1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
                  # we authorize the simulation to be equal to the tolerance level, for consistency
                  # with the quantile definition of the tolerance
                  simul_picked = as.numeric(new_simul)
                  i_acc = i_acc + 1
                }
            }
            seed_count = seed_count + R
            simul_below_tol2 = rbind(simul_below_tol2, simul_picked)
            # for progressbar message and time evaluation
            if (progress_bar) {
                duration = difftime(Sys.time(), startb, units = "secs")
                text = ""
                if (i == nb_simul_step) {
                  text = paste("Step ", it, " completed  in", format(.POSIXct(duration, 
                    tz = "GMT"), "%H:%M:%S"), "                                              ")
                } else {
                  text = paste("Time elapsed during step ", it, ":", format(.POSIXct(duration, 
                    tz = "GMT"), "%H:%M:%S"), "Estimated time remaining for step ", 
                    it, ":", format(.POSIXct(duration/i * (nb_simul_step - i), tz = "GMT"), 
                      "%H:%M:%S"))
                }
                .updateProgressBar(pb, i/nb_simul_step, text)
            }
        }
        if (progress_bar) {
            close(pb)
        }
        simul_below_tol3 = matrix(0, nb_simul, (nparam + nstat))
        for (i1 in 1:(nb_simul - n_alpha)) {
            for (i2 in 1:(nparam + nstat)) {
                simul_below_tol3[i1, i2] = as.numeric(simul_below_tol[i1, i2])
            }
        }
        for (i1 in (nb_simul - n_alpha + 1):nb_simul) {
            for (i2 in 1:(nparam + nstat)) {
                simul_below_tol3[i1, i2] = as.numeric(simul_below_tol2[(i1 - nb_simul + 
                  n_alpha), i2])
            }
        }
        simul_below_tol = simul_below_tol3
        p_acc = max(1, i_acc)/(nb_simul_step * R)  # to have a strictly positive p_acc
        Rp = R
        if (p_acc < 1) {
            R = ceiling(log(c)/log(1 - p_acc))
        } else {
            R = 1
        }
        if (verbose == TRUE) {
            write.table(as.numeric(Rp), file = paste("R_step", it, sep = ""), row.names = F, 
                col.names = F, quote = F)
            write.table(as.numeric(tol_next), file = paste("tolerance_step", it, 
                sep = ""), row.names = F, col.names = F, quote = F)
            write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step", 
                it, sep = ""), row.names = F, col.names = F, quote = F)
            write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = paste("output_step", 
                it, sep = ""), row.names = F, col.names = F, quote = F)
            intermediary_steps[[it]] = list(n_simul_tot = as.numeric(seed_count - 
                seed_count_ini), R_step = as.numeric(Rp), tol_step = as.numeric(tol_next), 
                posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
        }
        tol_next = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
            (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights))
        if (progress_bar) {
            print(paste("step ", it, " completed - R used = ", Rp, " - tol = ", tol_next, 
                " - next R used will be ", R, sep = ""))
        }
    }
    ## final step to diversify the n_alpha particles
    simul_below_tol2 = NULL
    for (i in 1:nb_simul) {
        simul_picked = simul_below_tol[i, ]
        for (j in 1:R) {
            # move it
            param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(simul_below_tol[, 
                1:nparam]))), prior, max_pick)
            param = simul_picked[1:nparam]
            param = param_moved
            if (use_seed) {
                param = c((seed_count + j), param)
            }
            # perform a simulation
            new_simul = c(param, model(param))
            if (use_seed) {
                new_simul = new_simul[2:(l + 1)]
            }
            # check whether it is below tol_next and undo the move if it is not
            if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam + 
                1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
                # we authorize the simulation to be equal to the tolerance level, for consistency
                # with the quantile definition of the tolerance
                simul_picked = as.numeric(new_simul)
            }
        }
        seed_count = seed_count + R
        simul_below_tol2 = rbind(simul_below_tol2, as.numeric(simul_picked))
    }
    final_res = NULL
    if (verbose == TRUE) {
        final_res = list(param = as.matrix(simul_below_tol2[, 1:nparam]), stats = as.matrix(simul_below_tol2[, 
            (nparam + 1):(nparam + nstat)]), weights = tab_weight/sum(tab_weight), 
            stats_normalization = as.numeric(sd_simul), epsilon = max(.compute_dist(summary_stat_target, 
                as.matrix(as.matrix(simul_below_tol2)[, (nparam + 1):(nparam + nstat)]), 
                sd_simul, dist_weights=dist_weights)), nsim = (seed_count - seed_count_ini), computime = as.numeric(difftime(Sys.time(), 
                start, units = "secs")), intermediary = intermediary_steps)
    } else {
        final_res = list(param = as.matrix(simul_below_tol2[, 1:nparam]), stats = as.matrix(simul_below_tol2[, 
            (nparam + 1):(nparam + nstat)]), weights = tab_weight/sum(tab_weight), 
            stats_normalization = as.numeric(sd_simul), epsilon = max(.compute_dist(summary_stat_target, 
                as.matrix(as.matrix(simul_below_tol2)[, (nparam + 1):(nparam + nstat)]), 
                sd_simul, dist_weights=dist_weights)), nsim = (seed_count - seed_count_ini), computime = as.numeric(difftime(Sys.time(), 
                start, units = "secs")))
    }
    final_res
}

## rejection algorithm with M simulations per parameter set
.ABC_rejection_M <- function(model, prior, prior_test, nb_simul, M, use_seed, seed_count) {
    tab_simul_summarystat = NULL
    tab_param = NULL
    l = length(prior)
    if (is.null(l)) {
        l = 1
    }
    for (i in 1:nb_simul) {
        param = .sample_prior(prior, prior_test)
        for (k in 1:M) {
            if (use_seed) {
                param = c((seed_count + 1), param)
            }
            seed_count = seed_count + 1
            simul_summarystat = model(param)
            tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(simul_summarystat))
            if (use_seed) {
                param = param[2:(l + 1)]
            }
            tab_param = rbind(tab_param, as.numeric(param))
        }
    }
    cbind(tab_param, tab_simul_summarystat)
}

## function to compute a distance between a matrix of simulated statistics and the
## array of data summary statistics - for M replicates simulations
.compute_dist_M <- function(M, summary_stat_target, simul, sd_simul, dist_weights=NULL) {
    l = length(summary_stat_target)
    nsimul = dim(simul)[1]
    if (is.null(nsimul)) {
     nsimul = length(simul)
    }
    dist = array(0, nsimul)
    if (!is.null(dist_weights)) {
        # TODO test if len(dist_weights)==len(summary_stat_target)
        for (i in 1:l) {
            dist = dist + (simul[,i] - summary_stat_target[i]) * (simul[,i] - summary_stat_target[i]) * (dist_weights[i]/sum(dist_weights))
        }
    } else {
        vartab = array(1, l)
        if (l > 1) {
            for (i in 1:l) {
                vartab[i] = min(1, 1/(sd_simul[i] * sd_simul[i]))  ## differences between simul and data are normalized in each dimension by the empirical variances in each dimension
                dist = dist + vartab[i] * (simul[, i] - summary_stat_target[i]) * (simul[,i] - summary_stat_target[i])  ## an euclidean distance is used
            }
        } else {
            vartab = min(1, 1/(sd_simul * sd_simul))  ## differences between simul and data are normalized in each dimension by the empirical variances in each dimension
            dist = dist + vartab * (simul[, 1] - summary_stat_target) * (simul[, 1] - summary_stat_target)  ## an euclidean distance is used
        }
    }
    distb = matrix(0, nsimul/M, M)
    for (i in 1:(nsimul/M)) {
        for (j in 1:M) {
            distb[i, j] = dist[((i - 1) * M + j)]
        }
    }
    distb
}

## function to compute the updated weights, given a new tolerance value
.compute_weight_delmoral <- function(particle_dist_mat, tolerance) {
    n_particle = dim(particle_dist_mat)[1]
    new_weight = array(0, n_particle)
    for (i in 1:n_particle) {
        new_weight[i] = length(particle_dist_mat[i, ][particle_dist_mat[i, ] < tolerance])
    }
    new_weight/sum(new_weight)
}

## function to compute the updated ESS, given a new tolerance value
.compute_ESS <- function(particle_dist_mat, tolerance) {
    n_particle = dim(particle_dist_mat)[1]
    new_weight = array(0, n_particle)
    for (i in 1:n_particle) {
        new_weight[i] = length(particle_dist_mat[i, ][particle_dist_mat[i, ] < tolerance])
    }
    if (sum(new_weight)==0){
      return(0)
    } else {
      new_weight = new_weight/sum(new_weight)
      1/(sum(new_weight * new_weight))
    }
}

## function to compute the number of simul below a new tolerance value
.compute_below <- function(particle_dist_mat, tolerance) {
    n_particle = dim(particle_dist_mat)[1]
    new_weight = array(0, n_particle)
    for (i in 1:n_particle) {
        new_weight[i] = length(particle_dist_mat[i, ][particle_dist_mat[i, ] < tolerance])
    }
    new_weight
}

## function to randomly pick a particle from a weighted array (of sum=1) for the
## Del Moral algorithm
.particle_pick_delmoral <- function(simul_below_tol, tab_weight, M) {
    u = runif(1)
    tab_weight2 = tab_weight/sum(tab_weight)
    weight_cum = cumsum(tab_weight2)
    pos = 1:length(tab_weight)
    p = min(pos[weight_cum > u])
    simul_below_tol[((1:M) + (p - 1) * M), ]
}

## function to replicate each cell of tab_weight M times
.replicate_tab <- function(tab_weight, M) {
    l = length(tab_weight)
    tab_weight2 = array(0, M * l)
    for (i in 1:l) {
        tab_weight2[((i - 1) * M + (1:M))] = tab_weight[i]
    }
    tab_weight2
}

## sequential algorithm of Del Moral et al. 2012 - the proposal used is a normal
## in each dimension (cf paragraph 3.2 in Del Moral et al. 2012)
.ABC_Delmoral <- function(model, prior, prior_test, nb_simul, summary_stat_target, 
    use_seed, verbose, alpha = 0.9, M = 1, nb_threshold = floor(nb_simul/2), tolerance_target = -1, 
    dist_weights=NULL, seed_count = 0, progress_bar = FALSE, max_pick=10000) {
    ## checking errors in the inputs
    if (!is.vector(alpha)) 
        stop("'alpha' has to be a number.")
    if (length(alpha) > 1) 
        stop("'alpha' has to be a number.")
    if (alpha <= 0) 
        stop("'alpha' has to be between 0 and 1.")
    if (alpha >= 1) 
        stop("'alpha' has to be between 0 and 1.")
    if (!is.vector(M)) 
        stop("'M' has to be a number.")
    if (length(M) > 1) 
        stop("'M' has to be a number.")
    if (M < 1) 
        stop("'M' has to be a positive integer.")
    M = floor(M)
    if (!is.vector(nb_threshold)) 
        stop("'nb_threshold' has to be a number.")
    if (length(nb_threshold) > 1) 
        stop("'nb_threshold' has to be a number.")
    if (nb_threshold < 1) 
        stop("'nb_threshold' has to be a positive integer.")
    nb_threshold = floor(nb_threshold)
    if (!is.vector(tolerance_target)) 
        stop("'tolerance_target' has to be a number.")
    if (length(tolerance_target) > 1) 
        stop("'tolerance_target' has to be a number.")
    if (tolerance_target <= 0) 
        stop("'tolerance_target' has to be positive.")
    if (!is.vector(seed_count)) 
        stop("'seed_count' has to be a number.")
    if (length(seed_count) > 1) 
        stop("'seed_count' has to be a number.")
    if (seed_count < 0) 
        stop("'seed_count' has to be a positive number.")
    seed_count = floor(seed_count)
    if (!is.logical(progress_bar)) 
        stop("'progress_bar' has to be boolean.")
    start = Sys.time()
    if (progress_bar) {
        print("    ------ Delmoral et al. (2012)'s algorithm ------")
    }
    seed_count_ini = seed_count
    nparam = length(prior)
    if (is.null(nparam)) {
        nparam = 1
    }
    nstat = length(summary_stat_target)
    # step 1 classic ABC step
    simul_below_tol = .ABC_rejection_M(model, prior, prior_test, nb_simul, M, use_seed, 
        seed_count)
    seed_count = seed_count + M * nb_simul
    tab_weight = rep(1/nb_simul, nb_simul)
    ESS = nb_simul
    uu = (1:nb_simul) * M  # to compute sd_simul with only one simulation per parameter set
    sd_simul = sapply(as.data.frame(simul_below_tol[uu, (nparam + 1):(nparam + nstat)]), 
        sd)  # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
    l = dim(simul_below_tol)[2]
    if (M > 1) {
        particle_dist_mat = .compute_dist_M(M, summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
            (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
    } else {
        particle_dist_mat = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
            (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
    }
    dim(particle_dist_mat) <- c(nb_simul, M)
    new_tolerance = max(particle_dist_mat)
    tab_weight2 = .replicate_tab(tab_weight, M)
    intermediary_steps = list(NULL)
    if (verbose == TRUE) {
        write.table(as.matrix(cbind(tab_weight2, simul_below_tol)), file = "output_step1", 
            row.names = F, col.names = F, quote = F)
        write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1", 
            row.names = F, col.names = F, quote = F)
        intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - seed_count_ini), 
            posterior = as.matrix(cbind(tab_weight2, simul_below_tol)))
    }
    if (progress_bar) {
        print("step 1 completed")
    }
    # following steps
    kstep = 1
    while (new_tolerance > tolerance_target) {
        kstep = kstep + 1
        # determination of the new tolerance
        ESS_target = alpha * ESS
        tolerance_list = sort(as.numeric(names(table(particle_dist_mat))), decreasing = TRUE)
        i = 1
        test = FALSE
        while ((!test) && (i < length(tolerance_list))) {
            i = i + 1
            # computation of new ESS with the new tolerance value
            new_ESS = .compute_ESS(particle_dist_mat, tolerance_list[i])
            # check whether this value is below ESS_targ
            if (new_ESS < ESS_target) {
                new_tolerance = tolerance_list[(i - 1)]
                test = TRUE
            }
        }
        # if effective sample size is too small, resampling of particles
        ESS = .compute_ESS(particle_dist_mat, new_tolerance)
        tab_weight = .compute_weight_delmoral(particle_dist_mat, new_tolerance)
        tab_below = .compute_below(particle_dist_mat, new_tolerance)
        particles = matrix(0, (nb_simul * M), (nparam + nstat))
        if (ESS < nb_threshold) {
            # sample nb_simul particles
            for (i in 1:nb_simul) {
                particles[((1:M) + (i - 1) * M), ] = as.matrix(.particle_pick_delmoral(simul_below_tol, 
                  tab_weight, M))
            }
            simul_below_tol = matrix(0, nb_simul * M, (nparam + nstat))
            for (i1 in 1:(nb_simul * M)) {
                for (i2 in 1:(nparam + nstat)) {
                  simul_below_tol[i1, i2] = as.numeric(particles[i1, i2])
                }
            }
            particles = as.matrix(particles[, 1:nparam])
            if (M > 1) {
                particle_dist_mat = .compute_dist_M(M, summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                  (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
            } else {
                particle_dist_mat = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                  (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
            }
            dim(particle_dist_mat) <- c(nb_simul, M)
            tab_below = .compute_below(particle_dist_mat, new_tolerance)
            # reset their weight to 1/nb_simul
            tab_weight = rep(1/nb_simul, nb_simul)
            ESS = nb_simul
        } else {
            particles = as.matrix(simul_below_tol[, 1:nparam])
        }
        # MCMC move
        covmat = 2 * cov.wt(as.matrix(as.matrix(particles[uu, ])[tab_weight > 0, 
            ]), as.vector(tab_weight[tab_weight > 0]))$cov
        l_array = dim(particles)[2]
        if (is.null(l_array)) {
            l_array = 1
        }
        sd_array = array(1, l_array)
        for (j in 1:l_array) {
            sd_array[j] = sqrt(covmat[j, j])
        }
        simul_below_tol2 = simul_below_tol
        simul_below_tol = matrix(0, nb_simul * M, (nparam + nstat))
        startb = Sys.time()
        # progress bar
        if (progress_bar) {
            pb <- .progressBar(width = 50)
        }
        duration = 0
        for (i in 1:nb_simul) {
            if (tab_weight[i] > 0) {
                tab_new_simul = NULL
                # move it
                param_moved = .move_particleb_uni(as.numeric(particles[(i * M), ]), 
                  sd_array, prior, max_pick)
                param = particles[(i * M), ]
                param = param_moved
                if (use_seed) {
                  param = c((seed_count + 1), param)
                }
                # perform M simulations
                for (j in 1:M) {
                  new_simul = c(param, model(param))
                  if (use_seed) {
                    param[1] = param[1] + 1
                  }
                  seed_count = seed_count + 1
                  if (use_seed) {
                    new_simul = new_simul[2:(l + 1)]
                  }
                  tab_new_simul = rbind(tab_new_simul, new_simul)
                }
                if (M > 1) {
                  tab_new_simul2 = matrix(0, M, (nparam + nstat))
                  for (i1 in 1:M) {
                    for (i2 in 1:(nparam + nstat)) {
                      tab_new_simul2[i1, i2] = as.numeric(tab_new_simul[i1, i2])
                    }
                  }
                } else {
                  tab_new_simul2 = as.numeric(tab_new_simul)
                }
                dim(tab_new_simul2) <- c(M, (nparam + nstat))
                # check whether the move is accepted
                n_acc = 1
                if (M > 1) {
                  new_dist = .compute_dist_M(M, summary_stat_target, as.matrix(as.matrix(tab_new_simul2)[, 
                    (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
                  n_acc = length(new_dist[new_dist < new_tolerance])
                } else {
                  new_dist = .compute_dist(summary_stat_target, rbind(tab_new_simul2[(nparam + 
                    1):(nparam + nstat)], tab_new_simul2[(nparam + 1):(nparam + nstat)]), 
                    sd_simul, dist_weights=dist_weights)
                  if (new_dist[1] > new_tolerance) {
                    n_acc = 0
                  }
                }
                MH = min(1, (n_acc/tab_below[i]))
                uuu = runif(1)
                if (uuu <= MH) {
                  for (i1 in 1:M) {
                    for (i2 in 1:(nparam + nstat)) {
                      simul_below_tol[((i1) + (i - 1) * M), i2] = as.numeric(tab_new_simul2[i1, 
                        i2])
                    }
                  }
                } else {
                  for (i1 in 1:M) {
                    for (i2 in 1:(nparam + nstat)) {
                      simul_below_tol[((i1) + (i - 1) * M), i2] = as.numeric(simul_below_tol2[((i1) + 
                        (i - 1) * M), i2])
                    }
                  }
                }
            } else {
                for (i1 in 1:M) {
                  for (i2 in 1:(nparam + nstat)) {
                    simul_below_tol[((i1) + (i - 1) * M), i2] = as.numeric(simul_below_tol2[((i1) + 
                      (i - 1) * M), i2])
                  }
                }
            }
            # for progressbar message and time evaluation
            if (progress_bar) {
                duration = difftime(Sys.time(), startb, units = "secs")
                text = ""
                if (i == nb_simul) {
                  text = paste("Step ", kstep, " completed in", format(.POSIXct(duration, 
                    tz = "GMT"), "%H:%M:%S"), "                                              ")
                } else {
                  text = paste("Time elapsed during step ", kstep, ":", format(.POSIXct(duration, 
                    tz = "GMT"), "%H:%M:%S"), "Estimated time remaining for step ", 
                    kstep, ":", format(.POSIXct(duration/i * (nb_simul - i), tz = "GMT"), 
                      "%H:%M:%S"))
                }
                .updateProgressBar(pb, i/nb_simul, text)
            }
        }
        if (progress_bar) {
            close(pb)
        }
        if (M > 1) {
            particle_dist_mat = .compute_dist_M(M, summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
        } else {
            particle_dist_mat = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
        }
        dim(particle_dist_mat) <- c(nb_simul, M)
        tab_weight = .compute_weight_delmoral(particle_dist_mat, new_tolerance)
        tab_weight2 = .replicate_tab(tab_weight, M)
        if (verbose == TRUE) {
            write.table(as.numeric(new_tolerance), file = paste("tolerance_step", 
                kstep, sep = ""), row.names = F, col.names = F, quote = F)
            write.table(as.matrix(cbind(tab_weight2, simul_below_tol)), file = paste("output_step", 
                kstep, sep = ""), row.names = F, col.names = F, quote = F)
            write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step", 
                kstep, sep = ""), row.names = F, col.names = F, quote = F)
            intermediary_steps[[kstep]] = list(n_simul_tot = as.numeric(seed_count - 
                seed_count_ini), tol_step = as.numeric(new_tolerance), posterior = as.matrix(cbind(tab_weight2, 
                simul_below_tol)))
        }
        if (progress_bar) {
            print(paste("step ", kstep, " completed - tol =", new_tolerance, sep = ""))
        }
    }
    final_res = NULL
    if (verbose == TRUE) {
        final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), 
            stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + 
                nstat)]), weights = tab_weight2/sum(tab_weight2), stats_normalization = as.numeric(sd_simul), 
            epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count - 
                seed_count_ini), computime = as.numeric(difftime(Sys.time(), start, 
                units = "secs")), intermediary = intermediary_steps)
    } else {
        final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), 
            stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + 
                nstat)]), weights = tab_weight2/sum(tab_weight2), stats_normalization = as.numeric(sd_simul), 
            epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count - 
                seed_count_ini), computime = as.numeric(difftime(Sys.time(), start, 
                units = "secs")))
    }
    final_res
}

## test if all the prior are defined with uniform distribution
.all_unif <- function(prior) {
    res = TRUE
    for (i in 1:length(prior)) {
        res = res && (prior[[i]]$isUniform)
    }
    res
}

## function to sample in the prior distributions using a Latin Hypercube sample
## The prior is supposed to be defined with only uniform distributions
.ABC_rejection_lhs <- function(model, prior, prior_test, nb_simul, use_seed, seed_count) {
    tab_simul_summarystat = NULL
    tab_param = NULL
    l = length(prior)
    nparam = length(prior)
    random_tab = randomLHS(nb_simul, nparam)
    lhs_index = 1
    for (i in 1:nb_simul) {
        test_passed = FALSE
        while (!test_passed) {
            param = array(0, l)
            for (j in 1:l) {
                param[j] = as.numeric(prior[[j]]$sampleArgs[2]) + (as.numeric(prior[[j]]$sampleArgs[3]) - 
                  as.numeric(prior[[j]]$sampleArgs[2])) * random_tab[lhs_index, j]
            }
            test_passed = .is_in_parameter_constraints(param, prior_test)
            if (!test_passed) {
                lhs_index = lhs_index + 1
                random_tab = augmentLHS(random_tab, 1)
            }
        }
        # Ok, we have our particle
        lhs_index = lhs_index + 1
        if (use_seed) {
            param = c((seed_count + i), param)
        }
        simul_summarystat = model(param)
        tab_simul_summarystat = rbind(tab_simul_summarystat, simul_summarystat)
        if (use_seed) {
            tab_param = rbind(tab_param, param[2:(l + 1)])
        } else {
            tab_param = rbind(tab_param, param)
        }
    }
    cbind(tab_param, tab_simul_summarystat)
}

## function to compute particle weights without normalizing to 1
.compute_weightb <- function(param_simulated, param_previous_step, tab_weight, prior) {
    vmat = as.matrix(2 * cov.wt(as.matrix(param_previous_step), as.vector(tab_weight))$cov)
    n_particle = dim(param_previous_step)[1]
    n_new_particle = dim(param_simulated)[1]
    tab_weight_new = array(0, n_new_particle)
    l = dim(param_previous_step)[2]
    multi = exp(-0.5 * l * log(2 * pi))/sqrt(abs(det(vmat)))
    invmat = 0.5 * solve(vmat)
    for (i in 1:n_particle) {
        for (k in 1:n_new_particle) {
            temp = param_simulated[k, ] - param_previous_step[i, ]
            tab_weight_new[k] = tab_weight_new[k] + tab_weight[i] * as.numeric(exp(-t(temp) %*% 
                invmat %*% temp))
        }
    }
    prior_density = .compute_weight_prior_tab(param_simulated, prior)
    tab_weight_new = prior_density/(multi * tab_weight_new)
    tab_weight_new
}

## function to compute particle weights with unidimensional jumps without
## normalizing to 1
.compute_weightb_uni <- function(param_simulated, param_previous_step, tab_weight2, 
    prior) {
    tab_weight = tab_weight2/sum(tab_weight2)
    l = dim(param_previous_step)[2]
    var_array = array(1, l)
    multi = (1/sqrt(2 * pi))^l
    for (j in 1:l) {
        var_array[j] = diag(4 * cov.wt(as.matrix(param_previous_step[, j]), as.vector(tab_weight))$cov)
        multi = multi * (1/sqrt(var_array[j]/2))
    }
    var_array = as.numeric(var_array)
    n_particle = dim(param_previous_step)[1]
    n_new_particle = dim(param_simulated)[1]
    tab_weight_new = array(0, n_new_particle)
    for (i in 1:n_particle) {
        tab_temp = array(tab_weight[i] * multi, n_new_particle)
        for (k in 1:l) {
            tab_temp = tab_temp * exp(-(as.numeric(param_simulated[, k]) - as.numeric(param_previous_step[i, 
                k])) * (as.numeric(param_simulated[, k]) - as.numeric(param_previous_step[i, 
                k]))/var_array[k])
        }
        tab_weight_new = tab_weight_new + tab_temp
    }
    prior_density = .compute_weight_prior_tab(param_simulated, prior)
    tab_weight_new = prior_density/tab_weight_new
    tab_weight_new
}

## function to perform ABC simulations from a non-uniform prior (derived from a
## set of particles)
.ABC_launcher_not_uniformc <- function(model, prior, param_previous_step, tab_weight, 
    nb_simul, use_seed, seed_count, inside_prior, progress_bar, max_pick=10000) {
    tab_simul_summarystat = NULL
    tab_param = NULL
    k_acc = 0
    startb = Sys.time()
    # progress bar
    if (progress_bar) {
        pb <- .progressBar(width = 50)
    }
    duration = 0
    for (i in 1:nb_simul) {
        l = dim(param_previous_step)[2]
        if (!inside_prior) {
            k_acc = k_acc + 1
            # pick a particle
            param_picked = .particle_pick(param_previous_step, tab_weight)
            # move it
            param_moved = .move_particle(as.numeric(param_picked), 2 * cov.wt(as.matrix(as.matrix(param_previous_step)), 
                as.vector(tab_weight))$cov)  # only variable parameters are moved, computation of a WEIGHTED variance
        } else {
            test = FALSE
            counter = 0
            while ((!test) && (counter < max_pick)) {
                counter = counter + 1
                k_acc = k_acc + 1
                # pick a particle
                param_picked = .particle_pick(param_previous_step, tab_weight)
                # move it
                param_moved = .move_particle(as.numeric(param_picked), 2 * cov.wt(as.matrix(as.matrix(param_previous_step)), 
                  as.vector(tab_weight))$cov)  # only variable parameters are moved, computation of a WEIGHTED variance
                test = .is_included(param_moved, prior)
            }
            if (counter == max_pick) {
                stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
            }
        }
        param = param_previous_step[1, ]
        param = param_moved
        if (use_seed) {
            param = c((seed_count + i), param)
        }
        simul_summarystat = model(param)
        tab_simul_summarystat = rbind(tab_simul_summarystat, simul_summarystat)
        if (use_seed) {
            tab_param = rbind(tab_param, param[2:(l + 1)])
        } else {
            tab_param = rbind(tab_param, param)
        }
        # for progressbar message and time evaluation
        if (progress_bar) {
            duration = difftime(Sys.time(), startb, units = "secs")
            text = ""
            if (i == nb_simul) {
                text = paste("Completed  in", format(.POSIXct(duration, tz = "GMT"), 
                  "%H:%M:%S"), "                                              ")
            } else {
                text = paste("Time elapsed:", format(.POSIXct(duration, tz = "GMT"), 
                  "%H:%M:%S"), "Estimated time remaining:", format(.POSIXct(duration/i * 
                  (nb_simul - i), tz = "GMT"), "%H:%M:%S"))
            }
            .updateProgressBar(pb, i/nb_simul, text)
        }
    }
    if (progress_bar) {
        close(pb)
    }
    list(cbind(tab_param, tab_simul_summarystat), nb_simul/k_acc)
}

## sequential algorithm of Lenormand et al. 2012
.ABC_Lenormand <- function(model, prior, prior_test, nb_simul, summary_stat_target, 
    use_seed, verbose, alpha = 0.5, p_acc_min = 0.05, dist_weights=NULL,
    seed_count = 0, inside_prior = TRUE, progress_bar = FALSE, store = FALSE, max_pick=10000) {
    ## checking errors in the inputs
    if (!is.vector(alpha)) 
        stop("'alpha' has to be a number.")
    if (length(alpha) > 1) 
        stop("'alpha' has to be a number.")
    if (alpha <= 0) 
        stop("'alpha' has to be between 0 and 1.")
    if (alpha >= 1) 
        stop("'alpha' has to be between 0 and 1.")
    if (!is.vector(p_acc_min)) 
        stop("'p_acc_min' has to be a number.")
    if (length(p_acc_min) > 1) 
        stop("'p_acc_min' has to be a number.")
    if (p_acc_min <= 0) 
        stop("'p_acc_min' has to be between 0 and 1.")
    if (p_acc_min >= 1) 
        stop("'p_acc_min' has to be between 0 and 1.")
    if (!is.vector(seed_count)) 
        stop("'seed_count' has to be a number.")
    if (length(seed_count) > 1) 
        stop("'seed_count' has to be a number.")
    if (seed_count < 0) 
        stop("'seed_count' has to be a positive number.")
    seed_count = floor(seed_count)
    if (!is.logical(inside_prior)) 
        stop("'inside_prior' has to be boolean.")
    if (!is.logical(progress_bar)) 
        stop("'progress_bar' has to be boolean.")
    start = Sys.time()
    if (progress_bar) {
        print("    ------ Lenormand et al. (2012)'s algorithm ------")
    }
    if (!store) {
        seed_count_ini = seed_count
        nparam = length(prior)
        nstat = length(summary_stat_target)
        if (!.all_unif(prior)) {
            stop("Prior distributions must be uniform to use the Lenormand et al. (2012)'s algorithm.")
        }
        n_alpha = ceiling(nb_simul * alpha)
        ## step 1 ABC rejection step with LHS
        tab_ini = .ABC_rejection_lhs(model, prior, prior_test, nb_simul, use_seed, 
            seed_count)
        # initially, weights are equal
        tab_weight = array(1, n_alpha)
        if (verbose == TRUE) {
            write.table(as.matrix(cbind(tab_weight, tab_ini)), file = "model_step1", 
                row.names = F, col.names = F, quote = F)
        }
        seed_count = seed_count + nb_simul
        # determination of the normalization constants in each dimension associated to
        # each summary statistic, this normalization will not change during all the
        # algorithm
        sd_simul = sapply(as.data.frame(tab_ini[, (nparam + 1):(nparam + nstat)]), 
            sd, na.rm = TRUE)
        # selection of the alpha quantile closest simulations
        simul_below_tol = NULL
        simul_below_tol = rbind(simul_below_tol, .selec_simul_alpha(summary_stat_target, 
            as.matrix(as.matrix(tab_ini)[, 1:nparam]), as.matrix(as.matrix(tab_ini)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, alpha, dist_weights=dist_weights))
        simul_below_tol = simul_below_tol[1:n_alpha, ]  # to be sure that there are not two or more simulations at a distance equal to the tolerance determined by the quantile
        tab_dist = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
            (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
        tol_next = max(tab_dist)
        intermediary_steps = list(NULL)
        if (verbose == TRUE) {
            write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = "output_step1", 
                row.names = F, col.names = F, quote = F)
            write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1", 
                row.names = F, col.names = F, quote = F)
            write.table(as.numeric(tol_next), file = "tolerance_step1", row.names = F, 
                col.names = F, quote = F)
            intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - 
                seed_count_ini), tol_step = as.numeric(tol_next), posterior = as.matrix(cbind(tab_weight, 
                simul_below_tol)))
        }
        if (progress_bar) {
            print("step 1 completed")
        }
        ## following steps
        p_acc = p_acc_min + 1
        nb_simul_step = nb_simul - n_alpha
        it = 1
        while (p_acc > p_acc_min) {
            it = it + 1
            simul_below_tol2 = NULL
            tab_inic = .ABC_launcher_not_uniformc(model, prior, as.matrix(as.matrix(simul_below_tol)[, 
                1:nparam]), tab_weight/sum(tab_weight), nb_simul_step, use_seed, 
                seed_count, inside_prior, progress_bar, max_pick)
            tab_ini = as.matrix(tab_inic[[1]])
            tab_ini = as.numeric(tab_ini)
            dim(tab_ini) = c(nb_simul_step, (nparam + nstat))
            seed_count = seed_count + nb_simul_step
            if (!inside_prior) {
                tab_weight2 = .compute_weightb(as.matrix(as.matrix(tab_ini[, 1:nparam])), 
                  as.matrix(as.matrix(simul_below_tol[, 1:nparam])), tab_weight/sum(tab_weight), 
                  prior)
            } else {
                tab_weight2 = tab_inic[[2]] * (.compute_weightb(as.matrix(as.matrix(tab_ini[, 
                  1:nparam])), as.matrix(as.matrix(simul_below_tol[, 1:nparam])), 
                  tab_weight/sum(tab_weight), prior))
            }
            if (verbose == TRUE) {
                write.table(as.matrix(cbind(tab_weight2, tab_ini)), file = paste("model_step", 
                  it, sep = ""), row.names = F, col.names = F, quote = F)
            }
            simul_below_tol2 = rbind(as.matrix(simul_below_tol), as.matrix(tab_ini))
            tab_weight = c(tab_weight, tab_weight2)
            tab_dist2 = .compute_dist(summary_stat_target, as.matrix(as.matrix(tab_ini)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
            p_acc = length(tab_dist2[tab_dist2 <= tol_next])/nb_simul_step
            tab_dist = c(tab_dist, tab_dist2)
            tol_next = sort(tab_dist)[n_alpha]
            simul_below_tol2 = simul_below_tol2[tab_dist <= tol_next, ]
            tab_weight = tab_weight[tab_dist <= tol_next]
            tab_weight = tab_weight[1:n_alpha]
            tab_dist = tab_dist[tab_dist <= tol_next]
            odist = order(tab_dist, decreasing = FALSE)[1:n_alpha]
            tab_dist_new = tab_dist
            simul_below_tol = matrix(0, n_alpha, (nparam + nstat))
            for (i1 in 1:n_alpha) {
                tab_dist_new[i1] = tab_dist[odist[i1]]
                for (i2 in 1:(nparam + nstat)) {
                  simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[odist[i1], 
                    i2])
                }
            }
            tab_dist = tab_dist_new[1:n_alpha]
            if (verbose == TRUE) {
                write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = paste("output_step", 
                  it, sep = ""), row.names = F, col.names = F, quote = F)
                write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step", 
                  it, sep = ""), row.names = F, col.names = F, quote = F)
                write.table(as.numeric(p_acc), file = paste("p_acc_step", it, sep = ""), 
                  row.names = F, col.names = F, quote = F)
                write.table(as.numeric(tol_next), file = paste("tolerance_step", 
                  it, sep = ""), row.names = F, col.names = F, quote = F)
                intermediary_steps[[it]] = list(n_simul_tot = as.numeric(seed_count - 
                  seed_count_ini), tol_step = as.numeric(tol_next), p_acc = as.numeric(p_acc), 
                  posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
            }
            if (progress_bar) {
                print(paste("step ", it, " completed - p_acc = ", p_acc, sep = ""))
            }
        }
        final_res = NULL
        if (verbose == TRUE) {
            final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), 
                stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + 
                  nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul), 
                epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                  (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count - 
                  seed_count_ini), computime = as.numeric(difftime(Sys.time(), start, 
                  units = "secs")), intermediary = intermediary_steps)
        } else {
            final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), 
                stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + 
                  nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul), 
                epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                  (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count - 
                  seed_count_ini), computime = as.numeric(difftime(Sys.time(), start, 
                  units = "secs")))
        }
    } else {
        seed_count_ini = seed_count
        nparam = length(prior)
        nstat = length(summary_stat_target)
        if (!.all_unif(prior)) {
            stop("Prior distributions must be uniform to use the Lenormand et al. (2012)'s algorithm.")
        }
        n_alpha = ceiling(nb_simul * alpha)
        ## step 1 ABC rejection step with LHS
        tab_ini = .ABC_rejection_lhs(model, prior, prior_test, nb_simul, use_seed, 
            seed_count)
        seed_count = seed_count + nb_simul
        sd_simul = sapply(as.data.frame(tab_ini[, (nparam + 1):(nparam + nstat)]), 
            sd)  # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
        write.table(as.matrix(cbind(array(1, nb_simul), as.matrix(tab_ini))), file = "output_all", 
            row.names = F, col.names = F, quote = F)
        # selection of the alpha quantile closest simulations
        simul_below_tol = NULL
        simul_below_tol = rbind(simul_below_tol, .selec_simul_alpha(summary_stat_target, 
            as.matrix(as.matrix(tab_ini)[, 1:nparam]), as.matrix(as.matrix(tab_ini)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, alpha, dist_weights=dist_weights))
        simul_below_tol = simul_below_tol[1:n_alpha, ]  # to be sure that there are not two or more simulations at a distance equal to the tolerance determined by the quantile
        # initially, weights are equal
        tab_weight = array(1, n_alpha)
        tab_dist = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
            (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
        tol_next = max(tab_dist)
        intermediary_steps = list(NULL)
        if (verbose == TRUE) {
            write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = "output_step1", 
                row.names = F, col.names = F, quote = F)
            write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1", 
                row.names = F, col.names = F, quote = F)
            write.table(as.numeric(tol_next), file = "tolerance_step1", row.names = F, 
                col.names = F, quote = F)
            intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - 
                seed_count_ini), tol_step = as.numeric(tol_next), posterior = as.matrix(cbind(tab_weight, 
                simul_below_tol)))
        }
        if (progress_bar) {
            print("step 1 completed")
        }
        ## following steps
        p_acc = p_acc_min + 1
        nb_simul_step = nb_simul - n_alpha
        it = 1
        while (p_acc > p_acc_min) {
            it = it + 1
            simul_below_tol2 = NULL
            tab_inic = .ABC_launcher_not_uniformc(model, prior, as.matrix(as.matrix(simul_below_tol)[, 
                1:nparam]), tab_weight/sum(tab_weight), nb_simul_step, use_seed, 
                seed_count, inside_prior, progress_bar)
            tab_ini = as.matrix(tab_inic[[1]])
            tab_ini = as.numeric(tab_ini)
            dim(tab_ini) = c(nb_simul_step, (nparam + nstat))
            seed_count = seed_count + nb_simul_step
            if (!inside_prior) {
                tab_weight2 = .compute_weightb(as.matrix(as.matrix(tab_ini[, 1:nparam])), 
                  as.matrix(as.matrix(simul_below_tol[, 1:nparam])), tab_weight/sum(tab_weight), 
                  prior)
            } else {
                tab_weight2 = tab_inic[[2]] * (.compute_weightb(as.matrix(as.matrix(tab_ini[, 
                  1:nparam])), as.matrix(as.matrix(simul_below_tol[, 1:nparam])), 
                  tab_weight/sum(tab_weight), prior))
            }
            simul_below_tol2 = rbind(as.matrix(simul_below_tol), as.matrix(tab_ini))
            write.table(as.matrix(cbind(tab_weight2, as.matrix(tab_ini))), file = "output_all", 
                row.names = F, col.names = F, quote = F, append = T)
            tab_weight = c(tab_weight, tab_weight2)
            tab_dist2 = .compute_dist(summary_stat_target, as.matrix(as.matrix(tab_ini)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
            p_acc = length(tab_dist2[tab_dist2 <= tol_next])/nb_simul_step
            tab_dist = c(tab_dist, tab_dist2)
            tol_next = sort(tab_dist)[n_alpha]
            simul_below_tol2 = simul_below_tol2[tab_dist <= tol_next, ]
            tab_weight = tab_weight[tab_dist <= tol_next]
            tab_weight = tab_weight[1:n_alpha]
            tab_dist = tab_dist[tab_dist <= tol_next]
            tab_dist = tab_dist[1:n_alpha]
            simul_below_tol = matrix(0, n_alpha, (nparam + nstat))
            for (i1 in 1:n_alpha) {
                for (i2 in 1:(nparam + nstat)) {
                  simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[i1, i2])
                }
            }
            if (verbose == TRUE) {
                write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = paste("output_step", 
                  it, sep = ""), row.names = F, col.names = F, quote = F)
                write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step", 
                  it, sep = ""), row.names = F, col.names = F, quote = F)
                write.table(as.numeric(p_acc), file = paste("p_acc_step", it, sep = ""), 
                  row.names = F, col.names = F, quote = F)
                write.table(as.numeric(tol_next), file = paste("tolerance_step", 
                  it, sep = ""), row.names = F, col.names = F, quote = F)
                intermediary_steps[[it]] = list(n_simul_tot = as.numeric(seed_count - 
                  seed_count_ini), tol_step = as.numeric(tol_next), p_acc = as.numeric(p_acc), 
                  posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
            }
            if (progress_bar) {
                print(paste("step ", it, " completed - p_acc = ", p_acc, sep = ""))
            }
        }
        final_res = NULL
        if (verbose == TRUE) {
            final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), 
                stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + 
                  nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul), 
                epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                  (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count - 
                  seed_count_ini), computime = as.numeric(difftime(Sys.time(), start, 
                  units = "secs")), intermediary = intermediary_steps)
        } else {
            final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), 
                stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + 
                  nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul), 
                epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                  (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count - 
                  seed_count_ini), computime = as.numeric(difftime(Sys.time(), start, 
                  units = "secs")))
        }
    }
    final_res
}

## distance from a point to the design points
.dist_compute_emulator <- function(x, design_pts) {
    norm_design_pts = design_pts
    norm_x = x
    if (is.vector(design_pts)) {
        norm_design_pts = design_pts/sd(design_pts)
        norm_x = x/sd(design_pts)
        dist = norm_design_pts - norm_x
    } else {
        nn = dim(design_pts)[2]
        for (j in 1:nn) {
            norm_design_pts[, j] = design_pts[, j]/sd(design_pts[, j])
            norm_x[j] = x[j]/sd(design_pts[, j])
        }
        dist = apply(norm_design_pts, MARGIN = 1, function(d) {
            sqrt(sum((d - norm_x)^2))
        })
    }
    
    dist
}

.tricubic_weight <- function(dist_array, span) {
    maxdist = sort(dist_array)[ceiling(span * length(dist_array))]
    w = (1 - (dist_array/maxdist)^3)^3
    w[w < 0] = 0
    w/sum(w)
}

.predict_locreg_deg2 <- function(x, design_pts, design_stats, span) {
    d = .dist_compute_emulator(x, design_pts)
    w = .tricubic_weight(d, span)
    if (!is.vector(design_pts) && dim(design_pts)[2] > 1) {
        centered_pts = t(apply(design_pts, MARGIN = 1, function(d) {
            d - x
        }))
    } else {
        centered_pts = design_pts - x
    }
    if (is.vector(centered_pts)) {
        reg_deg2 <- as.formula(paste("design_stats ~ (centered_pts)^2"))
    } else {
        nparam = dim(centered_pts)[2]
        xnam = paste0("centered_pts[,", 1:nparam)
        reg_deg2 <- as.formula(paste("design_stats ~ (", paste(xnam, collapse = "]+"), 
            "])^2"))
    }
    locreg = lm(reg_deg2, weights = w)
    if (!is.vector(design_stats) && dim(design_stats)[2] > 1) {
        mean_res = as.numeric(locreg$coefficients[1, ])
        cov_res = cov.wt(locreg$residuals, wt = w)$cov
    } else {
        mean_res = as.numeric(locreg$coefficients[1])
        cov_res = cov.wt(as.matrix(locreg$residuals), wt = w)$cov
    }
    list(mean = mean_res, covmat = cov_res)
}

.emulator_locreg_deg2 <- function(x, design_pts, design_stats, span) {
    temp = .predict_locreg_deg2(x, design_pts, design_stats, span)
    mvrnorm(n = 1, mu = temp$mean, Sigma = temp$covmat)
}

.ABC_sequential_emulation <- function(model, prior, prior_test, nb_simul, summary_stat_target, 
    use_seed, verbose, n_step_emulation = 9, emulator_span = 50, alpha = 0.5, p_acc_min = 0.05, 
    dist_weights=NULL, seed_count = 0, inside_prior = TRUE, progress_bar = FALSE) {
    ## checking errors in the inputs
    if (!is.vector(alpha)) 
        stop("'alpha' has to be a number.")
    if (length(alpha) > 1) 
        stop("'alpha' has to be a number.")
    if (alpha <= 0) 
        stop("'alpha' has to be between 0 and 1.")
    if (alpha >= 1) 
        stop("'alpha' has to be between 0 and 1.")
    if (!is.vector(p_acc_min)) 
        stop("'p_acc_min' has to be a number.")
    if (length(p_acc_min) > 1) 
        stop("'p_acc_min' has to be a number.")
    if (p_acc_min <= 0) 
        stop("'p_acc_min' has to be between 0 and 1.")
    if (p_acc_min >= 1) 
        stop("'p_acc_min' has to be between 0 and 1.")
    if (!is.vector(seed_count)) 
        stop("'seed_count' has to be a number.")
    if (length(seed_count) > 1) 
        stop("'seed_count' has to be a number.")
    if (seed_count < 0) 
        stop("'seed_count' has to be a positive number.")
    seed_count = floor(seed_count)
    if (!is.logical(inside_prior)) 
        stop("'inside_prior' has to be boolean.")
    if (!is.logical(progress_bar)) 
        stop("'progress_bar' has to be boolean.")
    start = Sys.time()
    if (progress_bar) {
        print("    ------ Jabot et al. (2015)'s algorithm ------")
    }
    nparam = length(prior)
    nstat = length(summary_stat_target)
    if (!.all_unif(prior)) {
        stop("Prior distributions must be uniform to use the Jabot et al. (2012)'s algorithm.")
    }
    n_alpha = ceiling(nb_simul * alpha)
    ## step 1 ABC rejection step with LHS
    tab_ini = .ABC_rejection_lhs(model, prior, prior_test, nb_simul, use_seed, seed_count)
    seed_count = seed_count + nb_simul
    # determination of the normalization constants in each dimension associated to
    # each summary statistic, this normalization will not change during all the
    # algorithm
    sd_simul = sapply(as.data.frame(tab_ini[, (nparam + 1):(nparam + nstat)]), sd)
    tab_weight_end = array(1, nb_simul)
    
    print("design 1 done")
    for (i_step_emulation in 1:n_step_emulation) {
        
        ## step 2 use of an emulator in a sequential ABC procedure ABC_emulator_xxx
        ## variables are globals and are removed at the end of the function
        emulator_design_pts = tab_ini[, 1:nparam]
        emulator_design_stats = tab_ini[, (nparam + 1):(nparam + nstat)]
        # TODO put 50 as a parameter and add a feature for doing a cross validation
        span = min(1, emulator_span/dim(tab_ini)[1])
        
        tab_dist = .compute_dist(summary_stat_target, as.matrix(tab_ini[, (nparam + 
            1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
        tol_max = sort(tab_dist)[nb_simul]
        
        res_emulator = .ABC_sequential_emulator(model, emulator_design_pts, emulator_design_stats,
            span, tab_ini[tab_dist <= tol_max, 
            ], tab_weight_end[tab_dist <= tol_max], nparam, nstat, sd_simul, 
            prior, prior_test, nb_simul, summary_stat_target, use_seed, verbose, 
            alpha, p_acc_min, dist_weights=dist_weights, seed_count, inside_prior, progress_bar)
        print("emulation done")
        
        ## step 3 draw of new particles according to the result of the emulator-based fit
        new_particles = .ABC_sequential_emulation_follow(model, res_emulator$weights, 
            res_emulator$simul, nparam, nstat, prior, prior_test, nb_simul, summary_stat_target, 
            use_seed, verbose, alpha, p_acc_min, seed_count, inside_prior, progress_bar)
        tab_ini = rbind(tab_ini, new_particles$simul)
        tab_weight_end = c(tab_weight_end, new_particles$weights)
        print("sim new particles done")
        
    }
    
    final_res = list(param = as.matrix(as.matrix(tab_ini)[, 1:nparam]), stats = as.matrix(as.matrix(tab_ini)[, 
        (nparam + 1):(nparam + nstat)]), weights = tab_weight_end, stats_normalization = as.numeric(sd_simul), 
        computime = as.numeric(difftime(Sys.time(), start, units = "secs")))
    final_res
}


.ABC_sequential_emulation_follow <- function(model, tab_weight, simul_below_tol, 
    nparam, nstat, prior, prior_test, nb_simul, summary_stat_target, use_seed, verbose, 
    alpha, p_acc_min, seed_count, inside_prior, progress_bar) {
    
    
    # generate new particles with the original model
    tab_inic = .ABC_launcher_not_uniformc(model, prior, as.matrix(as.matrix(simul_below_tol)[, 
        1:nparam]), tab_weight/sum(tab_weight), nb_simul, use_seed, seed_count, inside_prior, 
        progress_bar)
    tab_ini = as.matrix(tab_inic[[1]])
    tab_ini = as.numeric(tab_ini)
    dim(tab_ini) = c(nb_simul, (nparam + nstat))
    seed_count = seed_count + nb_simul
    if (!inside_prior) {
        tab_weight2 = .compute_weightb(as.matrix(as.matrix(tab_ini[, 1:nparam])), 
            as.matrix(as.matrix(simul_below_tol[, 1:nparam])), tab_weight/sum(tab_weight), 
            prior)
    } else {
        tab_weight2 = tab_inic[[2]] * (.compute_weightb(as.matrix(as.matrix(tab_ini[, 
            1:nparam])), as.matrix(as.matrix(simul_below_tol[, 1:nparam])), tab_weight/sum(tab_weight), 
            prior))
    }
    
    
    final_res = list(simul = as.matrix(as.matrix(tab_ini)), weights = tab_weight2)
    final_res
}


## step 2 use of an emulator in a sequential ABC procedure
.ABC_sequential_emulator <- function(model, emulator_design_pts, emulator_design_stats, emulator_span, tab_ini1, tab_weight1, nparam, nstat, 
    sd_simul, prior, prior_test, nb_simul, summary_stat_target, use_seed, 
    verbose, alpha, p_acc_min, dist_weights, seed_count, inside_prior, progress_bar) {
    
    n_alpha = ceiling(nb_simul * alpha)
    
    design_pts = tab_ini1[, 1:nparam]
    design_stats = tab_ini1[, (nparam + 1):(nparam + nstat)]
    
    # initialize with the design particles
    simul_below_tol = tab_ini1
    tab_weight = tab_weight1
    tab_dist = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
        (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
    tol_next = max(tab_dist)
    intermediary_steps = list(NULL)
    
    # following steps
    p_acc = p_acc_min + 1
    nb_simul_step = nb_simul - n_alpha
    it = 1

    while (p_acc > p_acc_min) {
        it = it + 1
        simul_below_tol2 = NULL
        if (use_seed) {
            model_emulator = function(parameters) {
                .emulator_locreg_deg2(parameters[2:length(parameters)], emulator_design_pts, emulator_design_stats, emulator_span)
            }
        } else {
            model_emulator = function(parameters) {
                .emulator_locreg_deg2(parameters, emulator_design_pts, emulator_design_stats, emulator_span)
            }
        }
        tab_inic = .ABC_launcher_not_uniformc(model_emulator, prior, as.matrix(as.matrix(simul_below_tol)[, 
            1:nparam]), tab_weight/sum(tab_weight), nb_simul_step, use_seed, seed_count, 
            inside_prior, progress_bar)
        tab_ini = as.matrix(tab_inic[[1]])
        tab_ini = as.numeric(tab_ini)
        dim(tab_ini) = c(nb_simul_step, (nparam + nstat))
        seed_count = seed_count + nb_simul_step
        if (!inside_prior) {
            tab_weight2 = .compute_weightb(as.matrix(as.matrix(tab_ini[, 1:nparam])), 
                as.matrix(as.matrix(simul_below_tol[, 1:nparam])), tab_weight/sum(tab_weight), 
                prior)
        } else {
            tab_weight2 = tab_inic[[2]] * (.compute_weightb(as.matrix(as.matrix(tab_ini[, 
                1:nparam])), as.matrix(as.matrix(simul_below_tol[, 1:nparam])), tab_weight/sum(tab_weight), 
                prior))
        }
        simul_below_tol2 = rbind(as.matrix(simul_below_tol), as.matrix(tab_ini))
        tab_weight = c(tab_weight, tab_weight2)
        tab_dist2 = .compute_dist(summary_stat_target, as.matrix(as.matrix(tab_ini)[, 
            (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
        p_acc = length(tab_dist2[tab_dist2 <= tol_next])/nb_simul_step
        tab_dist = c(tab_dist, tab_dist2)
        tol_next = sort(tab_dist)[n_alpha]
        simul_below_tol2 = simul_below_tol2[tab_dist <= tol_next, ]
        tab_weight = tab_weight[tab_dist <= tol_next]
        tab_weight = tab_weight[1:n_alpha]
        tab_dist = tab_dist[tab_dist <= tol_next]
        tab_dist = tab_dist[1:n_alpha]
        simul_below_tol = matrix(0, n_alpha, (nparam + nstat))
        for (i1 in 1:n_alpha) {
            for (i2 in 1:(nparam + nstat)) {
                simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[i1, i2])
            }
        }
    }
    final_res = list(simul = as.matrix(as.matrix(simul_below_tol)), weights = tab_weight)
    final_res
}

## FUNCTION ABC_sequential: Sequential ABC methods (Beaumont et al. 2009, Drovandi
## & Pettitt 2011, Del Moral et al. 2011, Lenormand et al. 2012, Jabot et al.
## 2015)
.ABC_sequential <- function(method, model, prior, prior_test, nb_simul, summary_stat_target, 
    use_seed, verbose, dist_weights=NULL, ...) {
    options(scipen = 50)
    ## general function regrouping the different sequential algorithms [Beaumont et
    ## al., 2009] Beaumont, M. A., Cornuet, J., Marin, J., and Robert, C. P.  (2009).
    ## Adaptive approximate Bayesian computation. Biometrika,96(4):983-990.  [Drovandi
    ## & Pettitt 2011] Drovandi, C. C. and Pettitt, A. N. (2011).  Estimation of
    ## parameters for macroparasite population evolution using approximate Bayesian
    ## computation. Biometrics, 67(1):225-233.  [Del Moral et al. 2012] Del Moral, P.,
    ## Doucet, A., and Jasra, A. (2012). An adaptive sequential Monte Carlo method for
    ## approximate Bayesian computation, Statistics and Computing., 22(5):1009-1020.
    ## [Lenormand et al. 2012] Lenormand, M., Jabot, F., Deffuant G. (2012). Adaptive
    ## approximate Bayesian computation for complex models, submitted to Comput. Stat.
    ## [Jabot et al. 2015] Jabot, F., Lagarrigues G., Courbaud B., Dumoulin N. (2015).
    ## A comparison of emulation methods for Approximate Bayesian Computation. To be
    ## published.  )
    return(switch(EXPR = method, Beaumont = .ABC_PMC(model, prior, prior_test, nb_simul, 
        summary_stat_target, use_seed, verbose, dist_weights=dist_weights, ...), Drovandi = .ABC_Drovandi(model, 
        prior, prior_test, nb_simul, summary_stat_target, use_seed, verbose, dist_weights=dist_weights, ...), 
        Delmoral = .ABC_Delmoral(model, prior, prior_test, nb_simul, summary_stat_target, 
            use_seed, verbose, dist_weights=dist_weights, ...), Lenormand = .ABC_Lenormand(model, prior, prior_test, 
            nb_simul, summary_stat_target, use_seed, dist_weights=dist_weights, verbose, ...), Emulation = .ABC_sequential_emulation(model, 
            prior, prior_test, nb_simul, summary_stat_target, use_seed, verbose, dist_weights=dist_weights, 
            ...)))
    options(scipen = 0)
}

## function to move a particle with a unidimensional uniform jump
.move_particle_uni_uniform <- function(param_picked, sd_array, prior, max_pick=10000) {
    test = FALSE
    res = param_picked
    counter = 0
    while ((!test) && (counter < max_pick)) {
        counter = counter + 1
        for (i in 1:length(param_picked)) {
            res[i] = runif(n = 1, min = param_picked[i] - sd_array[i], max = param_picked[i] + 
                sd_array[i])
        }
        test = .is_included(res, prior)
    }
    if (counter == max_pick) {
        stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
    }
    res
}

.make_proposal_range <- function(prior) {
    res = NULL
    sample_range = array(0, 100)
    for (i in 1:length(prior)) {
        for (j in 1:100) {
            sample_range[j] = prior[[i]]$sampling()
        }
        res[i] = sd(sample_range)/10
    }
    res
}

## ABC-MCMC algorithm of Marjoram et al. 2003
.ABC_MCMC <- function(model, prior, prior_test, n_obs, n_between_sampling, summary_stat_target, 
    use_seed, verbose, dist_max = 0, tab_normalization = summary_stat_target, proposal_range = vector(mode = "numeric", 
        length = length(prior)), dist_weights=NULL, seed_count = 0, progress_bar = FALSE, max_pick=10000) {
    ## checking errors in the inputs
    if (!is.vector(dist_max)) 
        stop("'dist_max' has to be a number.")
    if (length(dist_max) > 1) 
        stop("'dist_max' has to be a number.")
    if (dist_max < 0) 
        stop("'dist_max' has to be positive.")
    if (!is.vector(tab_normalization)) 
        stop("'tab_normalization' has to be a vector.")
    if (length(tab_normalization) != length(summary_stat_target)) 
        stop("'tab_normalization' must have the same length as 'summary_stat_target'.")
    if (!is.vector(proposal_range)) 
        stop("'proposal_range' has to be a vector.")
    if (length(proposal_range) != length(prior)) 
        stop("'proposal_range' must have the same length as the number of model parameters.")
    if (!is.vector(seed_count)) 
        stop("'seed_count' has to be a number.")
    if (length(seed_count) > 1) 
        stop("'seed_count' has to be a number.")
    if (seed_count < 0) 
        stop("'seed_count' has to be a positive number.")
    seed_count = floor(seed_count)
    if (!is.logical(progress_bar)) 
        stop("'progress_bar' has to be boolean.")
    start = Sys.time()
    if (progress_bar) {
        print("    ------ Marjoram et al. (2003)'s algorithm ------")
    }
    if (sum(abs(tab_normalization - summary_stat_target)) == 0) {
        print("Warning: summary statistics are normalized by default through a division by the target summary statistics - it may not be appropriate to your case.")
        print("Consider providing normalization constants for each summary statistics in the option 'tab_normalization' or using the method 'Marjoram' which automatically determines these constants.")
    }
    for (ii in 1:length(tab_normalization)) {
        if (tab_normalization[ii] == 0) {
            tab_normalization[ii] = 1
        }
    }
    if (sum(proposal_range) == 0) {
        proposal_range = .make_proposal_range(prior)
        print("Warning: default values for proposal distributions are used - they may not be appropriate to your case.")
        print("Consider providing proposal range constants for each parameter in the option 'proposal_range' or using the method 'Marjoram' which automatically determines these constants.")
    }
    seed_count_ini = seed_count
    nparam = length(prior)
    nstat = length(summary_stat_target)
    tab_simul_summary_stat = NULL
    tab_param = NULL
    # initial draw of a particle below the tolerance dist_max
    test = FALSE
    dist_simul = NULL
    if (dist_max == 0) {
        param = .sample_prior(prior, prior_test)
        if (use_seed) {
            param = c((seed_count + 1), param)
        }
        simul_summary_stat = model(param)
        dist_simul = .compute_dist(summary_stat_target, as.numeric(simul_summary_stat), 
            tab_normalization, dist_weights=dist_weights)
        dist_max = dist_simul/2
        seed_count = seed_count + 1
        print("Warning: a default value for the tolerance has been computed - it may not be appropriate to your case.")
        print("Consider providing a tolerance value in the option 'dist_max' or using the method 'Marjoram' which automatically determines this value.")
    }
    while (!test) {
        param = .sample_prior(prior, prior_test)
        if (use_seed) {
            param = c((seed_count + 1), param)
        }
        simul_summary_stat = model(param)
        dist_simul = .compute_dist(summary_stat_target, as.numeric(simul_summary_stat), 
            tab_normalization, dist_weights=dist_weights)
        if (dist_simul < dist_max) {
            test = TRUE
        }
        seed_count = seed_count + 1
    }
    tab_simul_summary_stat = rbind(tab_simul_summary_stat, simul_summary_stat)
    tab_param = rbind(tab_param, param)
    if (use_seed) {
        tab_param = tab_param[, 2:(nparam + 1)]
    }
    tab_simul_ini = as.numeric(simul_summary_stat)
    param_ini = tab_param
    dist_ini = dist_simul
    if (verbose == TRUE) {
        write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1", 
            row.names = F, col.names = F, quote = F)
        write.table(NULL, file = "output_mcmc", row.names = F, col.names = F, quote = F)
    }
    if (progress_bar) {
        print("initial draw performed ")
    }
    # chain run progress bar
    if (progress_bar) {
        pb <- .progressBar(width = 50)
        duration = 0
    }
    tab_param = param_ini
    tab_simul_summary_stat = tab_simul_ini
    tab_dist = as.numeric(dist_ini)
    if (verbose == TRUE) {
        intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
        write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
    }
    for (is in 2:n_obs) {
        for (i in 1:n_between_sampling) {
            param = .move_particle_uni_uniform(as.numeric(param_ini), proposal_range, 
                prior, max_pick)
            if (use_seed) {
                param = c(seed_count, param)
            }
            simul_summary_stat = model(param)
            if (use_seed) {
                param = param[2:(nparam + 1)]
            }
            dist_simul = .compute_dist(summary_stat_target, as.numeric(simul_summary_stat), 
                tab_normalization, dist_weights=dist_weights)
            if (dist_simul < dist_max) {
                param_ini = param
                tab_simul_ini = as.numeric(simul_summary_stat)
                dist_ini = dist_simul
            }
            seed_count = seed_count + 1
        }
        tab_simul_summary_stat = rbind(tab_simul_summary_stat, tab_simul_ini)
        tab_param = rbind(tab_param, as.numeric(param_ini))
        tab_dist = rbind(tab_dist, as.numeric(dist_ini))
        if (verbose == TRUE) {
            intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
            write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
        }
        if (progress_bar) {
            # for progressbar message and time evaluation
            duration = difftime(Sys.time(), start, units = "secs")
            text = ""
            if (is == n_obs) {
                text = paste("Completed  in", format(.POSIXct(duration, tz = "GMT"), 
                  "%H:%M:%S"), "                                              ")
            } else {
                text = paste("Time elapsed:", format(.POSIXct(duration, tz = "GMT"), 
                  "%H:%M:%S"), "Estimated time remaining:", format(.POSIXct(duration/is * 
                  (n_obs - is), tz = "GMT"), "%H:%M:%S"))
            }
            .updateProgressBar(pb, is/n_obs, text)
        }
    }
    if (progress_bar) {
        close(pb)
    }
    tab_param2 = matrix(0, dim(tab_param)[1], dim(tab_param)[2])
    for (i in 1:dim(tab_param)[1]) {
        for (j in 1:dim(tab_param)[2]) {
            tab_param2[i, j] = tab_param[i, j]
        }
    }
    tab_simul_summary_stat2 = matrix(0, dim(tab_simul_summary_stat)[1], dim(tab_simul_summary_stat)[2])
    for (i in 1:dim(tab_simul_summary_stat)[1]) {
        for (j in 1:dim(tab_simul_summary_stat)[2]) {
            tab_simul_summary_stat2[i, j] = tab_simul_summary_stat[i, j]
        }
    }
    tab_dist2 = array(0, length(tab_dist))
    for (i in 1:length(tab_dist)) {
        tab_dist2[i] = tab_dist[i]
    }
    list(param = as.matrix(tab_param2), stats = as.matrix(tab_simul_summary_stat2), 
        dist = tab_dist2, stats_normalization = as.numeric(tab_normalization), epsilon = max(tab_dist), 
        nsim = (seed_count - seed_count_ini), n_between_sampling = n_between_sampling, 
        computime = as.numeric(difftime(Sys.time(), start, units = "secs")))
}

## ABC-MCMC2 algorithm of Marjoram et al. 2003 with automatic determination of the
## tolerance and proposal range following Wegmann et al. 2009
.ABC_MCMC2 <- function(model, prior, prior_test, n_obs, n_between_sampling, summary_stat_target, 
    use_seed, verbose, n_calibration = 10000, tolerance_quantile = 0.01, proposal_phi = 1, 
    dist_weights=NULL, seed_count = 0, progress_bar = FALSE, max_pick=10000) {
    ## checking errors in the inputs
    if (!is.vector(n_calibration)) 
        stop("'n_calibration' has to be a number.")
    if (length(n_calibration) > 1) 
        stop("'n_calibration' has to be a number.")
    if (n_calibration < 1) 
        stop("'n_calibration' has to be positive.")
    n_calibration = floor(n_calibration)
    if (!is.vector(tolerance_quantile)) 
        stop("'tolerance_quantile' has to be a number.")
    if (length(tolerance_quantile) > 1) 
        stop("'tolerance_quantile' has to be a number.")
    if (tolerance_quantile <= 0) 
        stop("'tolerance_quantile' has to be between 0 and 1.")
    if (tolerance_quantile >= 1) 
        stop("'tolerance_quantile' has to be between 0 and 1.")
    if (!is.vector(proposal_phi)) 
        stop("'proposal_phi' has to be a number.")
    if (length(proposal_phi) > 1) 
        stop("'proposal_phi' has to be a number.")
    if (proposal_phi <= 0) 
        stop("'proposal_phi' has to be positive.")
    if (!is.vector(seed_count)) 
        stop("'seed_count' has to be a number.")
    if (length(seed_count) > 1) 
        stop("'seed_count' has to be a number.")
    if (seed_count < 0) 
        stop("'seed_count' has to be a positive number.")
    seed_count = floor(seed_count)
    if (!is.logical(progress_bar)) 
        stop("'progress_bar' has to be boolean.")
    start = Sys.time()
    if (progress_bar) {
        print("    ------ Marjoram et al. (2003)'s algorithm with modifications drawn from Wegmann et al. (2009) related to automatization ------")
    }
    seed_count_ini = seed_count
    nparam = length(prior)
    nstat = length(summary_stat_target)
    tab_param = matrix(NA, n_calibration, ifelse(use_seed, nparam + 1, nparam))
    tab_simul_summary_stat = matrix(NA, n_calibration, nstat)
    # initial draw of a particle
    for (i in 1:(n_calibration)) {
        param = .sample_prior(prior, prior_test)
        if (use_seed) {
            param = c((seed_count + i), param)
        }
        simul_summary_stat = model(param)
        tab_simul_summary_stat[i, ] = as.numeric(simul_summary_stat)
        tab_param[i, ] = param
    }
    seed_count = seed_count + n_calibration
    if (use_seed) {
        tab_param = tab_param[, 2:(nparam + 1)]
    }
    sd_simul = array(0, nstat)
    for (i in 1:nstat) {
        sd_simul[i] = sd(tab_simul_summary_stat[, i])
    }
    simuldist = .compute_dist(summary_stat_target, tab_simul_summary_stat, sd_simul, dist_weights=dist_weights)
    ord_sim = order(simuldist, decreasing = F)
    nmax = ceiling(tolerance_quantile * n_calibration)
    dist_max = simuldist[(ord_sim[nmax])]
    tab_param = tab_param[(ord_sim[1:nmax]), ]
    proposal_range = vector(mode = "numeric", length = nparam)
    for (i in 1:nparam) {
        proposal_range[i] = sd(as.matrix(tab_param)[, i]) * proposal_phi/2
    }
    n_ini = sample(nmax, 1)
    tab_simul_ini = as.numeric(tab_simul_summary_stat[(ord_sim[n_ini]), ])
    dist_ini = simuldist[(ord_sim[n_ini])]
    param_ini = as.matrix(tab_param)[n_ini, ]
    if (verbose == TRUE) {
        write.table((seed_count - seed_count_ini), file = "n_simul_tot_step1", row.names = F, 
            col.names = F, quote = F)
        write.table(NULL, file = "output_mcmc", row.names = F, col.names = F, quote = F)
    }
    if (progress_bar) {
        print("initial calibration performed ")
    }
    # chain run progress bar
    startb = Sys.time()
    if (progress_bar) {
        pb <- .progressBar(width = 50)
        duration = 0
    }
    tab_param = matrix(NA, n_obs, length(param_ini))
    tab_simul_summary_stat = matrix(NA, n_obs, nstat)
    tab_dist = numeric(n_obs)
    tab_param[1, ] = as.numeric(param_ini)
    tab_simul_summary_stat[1, ] = as.numeric(tab_simul_ini)
    tab_dist = as.numeric(dist_ini)
    seed_count = seed_count + 1
    if (verbose == TRUE) {
        intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
        write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
    }
    for (is in 2:n_obs) {
        for (i in 1:n_between_sampling) {
            param = .move_particle_uni_uniform(as.numeric(param_ini), proposal_range, 
                prior, max_pick)
            if (use_seed) {
                param = c(seed_count, param)
            }
            simul_summary_stat = model(param)
            if (use_seed) {
                param = param[2:(nparam + 1)]
            }
            dist_simul = .compute_dist(summary_stat_target, as.numeric(simul_summary_stat), 
                sd_simul, dist_weights=dist_weights)
            if (dist_simul < dist_max) {
                param_ini = param
                tab_simul_ini = as.numeric(simul_summary_stat)
                dist_ini = dist_simul
            }
            seed_count = seed_count + 1
        }
        tab_simul_summary_stat[is, ] = as.numeric(tab_simul_ini)
        tab_param[is, ] = as.numeric(param_ini)
        tab_dist[is] = as.numeric(dist_ini)
        if (verbose == TRUE) {
            intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
            write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
        }
        if (progress_bar) {
            # for progressbar message and time evaluation
            duration = difftime(Sys.time(), startb, units = "secs")
            text = ""
            if (is == n_obs) {
                text = paste("Completed  in", format(.POSIXct(duration, tz = "GMT"), 
                  "%H:%M:%S"), "                                              ")
            } else {
                text = paste("Time elapsed:", format(.POSIXct(duration, tz = "GMT"), 
                  "%H:%M:%S"), "Estimated time remaining:", format(.POSIXct(duration/is * 
                  (n_obs - is), tz = "GMT"), "%H:%M:%S"))
            }
            .updateProgressBar(pb, is/n_obs, text)
        }
    }
    if (progress_bar) {
        close(pb)
    }
    tab_param2 = matrix(0, dim(tab_param)[1], dim(tab_param)[2])
    for (i in 1:dim(tab_param)[1]) {
        for (j in 1:dim(tab_param)[2]) {
            tab_param2[i, j] = tab_param[i, j]
        }
    }
    tab_simul_summary_stat2 = matrix(0, dim(tab_simul_summary_stat)[1], dim(tab_simul_summary_stat)[2])
    for (i in 1:dim(tab_simul_summary_stat)[1]) {
        for (j in 1:dim(tab_simul_summary_stat)[2]) {
            tab_simul_summary_stat2[i, j] = tab_simul_summary_stat[i, j]
        }
    }
    tab_dist2 = array(0, length(tab_dist))
    for (i in 1:length(tab_dist)) {
        tab_dist2[i] = tab_dist[i]
    }
    list(param = as.matrix(tab_param2), stats = as.matrix(tab_simul_summary_stat2), 
        dist = tab_dist2, stats_normalization = as.numeric(sd_simul), epsilon = max(tab_dist), 
        nsim = (seed_count - seed_count_ini), n_between_sampling = n_between_sampling, 
        computime = as.numeric(difftime(Sys.time(), start, units = "secs")))
}

## ABC-MCMC3 algorithm of Wegmann et al. 2009 - the PLS step is drawn from the
## manual of ABCtoolbox (figure 9) - NB: for consistency with ABCtoolbox, AM11-12
## are not implemented in the algorithm
.ABC_MCMC3 <- function(model, prior, prior_test, n_obs, n_between_sampling, summary_stat_target, 
    use_seed, verbose, n_calibration = 10000, tolerance_quantile = 0.01, proposal_phi = 1, 
    numcomp = 0, dist_weights=NULL, seed_count = 0, progress_bar = FALSE, max_pick=10000) {
    ## checking errors in the inputs
    if (!is.vector(n_calibration)) 
        stop("'n_calibration' has to be a number.")
    if (length(n_calibration) > 1) 
        stop("'n_calibration' has to be a number.")
    if (n_calibration < 1) 
        stop("'n_calibration' has to be positive.")
    n_calibration = floor(n_calibration)
    if (!is.vector(tolerance_quantile)) 
        stop("'tolerance_quantile' has to be a number.")
    if (length(tolerance_quantile) > 1) 
        stop("'tolerance_quantile' has to be a number.")
    if (tolerance_quantile <= 0) 
        stop("'tolerance_quantile' has to be between 0 and 1.")
    if (tolerance_quantile >= 1) 
        stop("'tolerance_quantile' has to be between 0 and 1.")
    if (!is.vector(proposal_phi)) 
        stop("'proposal_phi' has to be a number.")
    if (length(proposal_phi) > 1) 
        stop("'proposal_phi' has to be a number.")
    if (proposal_phi <= 0) 
        stop("'proposal_phi' has to be positive.")
    if (!is.vector(numcomp)) 
        stop("'numcomp' has to be a number.")
    if (length(numcomp) > 1) 
        stop("'numcomp' has to be a number.")
    if (numcomp < 0) 
        stop("'numcomp' has to be positive.")
    if (numcomp > length(summary_stat_target)) 
        stop("'numcomp' has to smaller or equal to the number of summary statistics.")
    numcomp = floor(numcomp)
    if (!is.vector(seed_count)) 
        stop("'seed_count' has to be a number.")
    if (length(seed_count) > 1) 
        stop("'seed_count' has to be a number.")
    if (seed_count < 0) 
        stop("'seed_count' has to be a positive number.")
    seed_count = floor(seed_count)
    if (!is.logical(progress_bar)) 
        stop("'progress_bar' has to be boolean.")
    # library(pls) library(MASS)
    start = Sys.time()
    if (progress_bar) {
        print("    ------ Wegmann et al. (2009)'s algorithm ------")
    }
    ## AM1
    seed_count_ini = seed_count
    nparam = length(prior)
    nstat = length(summary_stat_target)
    if (nstat <= 1) {
        stop("A single summary statistic is used, use the method 'Marjoram' instead")
    }
    if (numcomp == 0) {
        numcomp = nstat
    }
    tab_simul_summary_stat = NULL
    tab_param = NULL
    if (length(prior) <= 1) {
        stop("A single parameter is varying, use the method 'Marjoram' instead")
    }
    # initial draw of a particle
    for (i in 1:(n_calibration)) {
        param = .sample_prior(prior, prior_test)
        if (use_seed) {
            param = c((seed_count + i), param)
        }
        simul_summary_stat = model(param)
        tab_simul_summary_stat = rbind(tab_simul_summary_stat, simul_summary_stat)
        tab_param = rbind(tab_param, param)
    }
    if (use_seed) {
        tab_param = tab_param[, 2:(nparam + 1)]
    }
    seed_count = seed_count + n_calibration
    if (verbose) {
        write.table((seed_count - seed_count_ini), file = "n_simul_tot_step1", row.names = F, 
            col.names = F, quote = F)
        write.table(NULL, file = "output_mcmc", row.names = F, col.names = F, quote = F)
    }
    ## AM2: PLS step print('AM2 ') standardize the params
    sparam = as.matrix(tab_param)
    ls = dim(sparam)[2]
    if (is.null(ls)) {
        ls = 1
    }
    for (i in 1:ls) {
        sparam[, i] = (sparam[, i] - mean(sparam[, i]))/sd(sparam[, i])
    }
    # force stat in [1,2]
    myMax <- c()
    myMin <- c()
    lambda <- c()
    myGM <- c()
    stat = tab_simul_summary_stat
    # print('stat 1 ') print(stat)
    summary_stat_targ = summary_stat_target
    for (i in 1:nstat) {
        myMax <- c(myMax, max(stat[, i]))
        myMin <- c(myMin, min(stat[, i]))
        stat[, i] = 1 + (stat[, i] - myMin[i])/(myMax[i] - myMin[i])
        summary_stat_targ[i] = 1 + (summary_stat_targ[i] - myMin[i])/(myMax[i] - 
            myMin[i])
    }
    # print('stat 2 ') print(stat) transform statistics via boxcox
    dmat = matrix(0, n_calibration, (ls + 1))
    for (i in 1:nstat) {
        d = cbind(as.vector(as.numeric(stat[, i])), as.matrix(sparam))
        for (i1 in 1:n_calibration) {
            for (i2 in 1:(ls + 1)) {
                dmat[i1, i2] = as.numeric(d[i1, i2])
            }
        }
        save(dmat, file = "dmat.RData")
        load("dmat.RData", .GlobalEnv)
        file.remove("dmat.RData")
        mylm <- lm(as.formula(as.data.frame(dmat)), data = as.data.frame(dmat))
        # mylm<-lm(as.formula(as.data.frame(dmat))) mylm<-lm(stat[,i]~as.matrix(sparam))
        myboxcox <- boxcox(mylm, lambda = seq(-20, 100, 1/10), interp = T, eps = 1/50, 
            plotit = FALSE)
        lambda <- c(lambda, myboxcox$x[myboxcox$y == max(myboxcox$y)])
        myGM <- c(myGM, exp(mean(log(stat[, i]))))
    }
    # standardize the BC-stat
    myBCMeans <- c()
    myBCSDs <- c()
    for (i in 1:nstat) {
        stat[, i] <- ((stat[, i]^lambda[i]) - 1)/(lambda[i] * (myGM[i]^(lambda[i] - 
            1)))
        summary_stat_targ[i] <- ((summary_stat_targ[i]^lambda[i]) - 1)/(lambda[i] * 
            (myGM[i]^(lambda[i] - 1)))
        myBCSDs <- c(myBCSDs, sd(stat[, i]))
        myBCMeans <- c(myBCMeans, mean(stat[, i]))
        stat[, i] <- (stat[, i] - myBCMeans[i])/myBCSDs[i]
        summary_stat_targ[i] <- (summary_stat_targ[i] - myBCMeans[i])/myBCSDs[i]
    }
    # perform pls
    myPlsr <- plsr(as.matrix(sparam) ~ as.matrix(stat), scale = F, ncomp = numcomp, 
        validation = "LOO")
    pls_transformation = matrix(0, numcomp, nstat)
    for (i in 1:numcomp) {
        pls_transformation[i, ] = as.numeric(myPlsr$loadings[, i])
    }
    ## AM3 print('AM3 ')
    summary_stat_targ = t(pls_transformation %*% as.vector(summary_stat_targ))
    stat_pls = t(pls_transformation %*% t(stat))
    simuldist = .compute_dist(summary_stat_targ, stat_pls, rep(1, numcomp), dist_weights=dist_weights)
    ## AM4 print('AM4 ')
    ord_sim = order(simuldist, decreasing = F)
    nmax = ceiling(tolerance_quantile * n_calibration)
    dist_max = simuldist[(ord_sim[nmax])]
    tab_param = tab_param[(ord_sim[1:nmax]), ]
    proposal_range = vector(mode = "numeric", length = nparam)
    for (i in 1:nparam) {
        proposal_range[i] = sd(tab_param[, i]) * proposal_phi/2
    }
    if (progress_bar) {
        print("initial calibration performed ")
    }
    ## AM5: chain run progress bar
    startb = Sys.time()
    if (progress_bar) {
        pb <- .progressBar(width = 50)
        duration = 0
    }
    # print('AM5 ')
    n_ini = sample(nmax, 1)
    tab_simul_ini = as.numeric(tab_simul_summary_stat[(ord_sim[n_ini]), ])
    param_ini = tab_param[n_ini, ]
    tab_param = param_ini
    tab_simul_summary_stat = tab_simul_ini
    dist_ini = simuldist[(ord_sim[n_ini])]
    tab_dist = as.numeric(dist_ini)
    seed_count = seed_count + 1
    if (verbose == TRUE) {
        intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
        write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
    }
    for (is in 2:n_obs) {
        for (i in 1:n_between_sampling) {
            ## AM6 print('AM6 ')
            param = .move_particle_uni_uniform(as.numeric(param_ini), proposal_range, 
                prior, max_pick)
            if (use_seed) {
                param = c(seed_count, param)
            }
            ## AM7 print('AM7 ')
            simul_summary_stat = model(param)
            simul_summary_stat_output = simul_summary_stat
            if (use_seed) {
                param = param[2:(nparam + 1)]
            }
            for (ii in 1:nstat) {
                simul_summary_stat[ii] = 1 + (simul_summary_stat[ii] - myMin[ii])/(myMax[ii] - 
                  myMin[ii])
            }
            for (ii in 1:nstat) {
                simul_summary_stat[ii] <- ((simul_summary_stat[ii]^lambda[ii]) - 
                  1)/(lambda[ii] * (myGM[ii]^(lambda[ii] - 1)))
                simul_summary_stat[ii] <- (simul_summary_stat[ii] - myBCMeans[ii])/myBCSDs[ii]
            }
            simul_summary_stat = as.matrix(simul_summary_stat)
            dim(simul_summary_stat) <- c(nstat, 1)
            simul_summary_stat = t(pls_transformation %*% simul_summary_stat)
            dist_simul = .compute_dist(summary_stat_targ, as.numeric(simul_summary_stat), 
                rep(1, numcomp), dist_weights=dist_weights)
            ## AM8-9 print('AM8-9 ')
            if (dist_simul < dist_max) {
                param_ini = param
                tab_simul_ini = as.numeric(simul_summary_stat_output)
                dist_ini = dist_simul
            }
            seed_count = seed_count + 1
        }
        tab_simul_summary_stat = rbind(tab_simul_summary_stat, tab_simul_ini)
        tab_param = rbind(tab_param, as.numeric(param_ini))
        tab_dist = rbind(tab_dist, as.numeric(dist_ini))
        if (verbose == TRUE) {
            intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
            write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
        }
        if (progress_bar) {
            # for progressbar message and time evaluation
            duration = difftime(Sys.time(), startb, units = "secs")
            text = ""
            if (is == n_obs) {
                text = paste("Completed  in", format(.POSIXct(duration, tz = "GMT"), 
                  "%H:%M:%S"), "                                              ")
            } else {
                text = paste("Time elapsed:", format(.POSIXct(duration, tz = "GMT"), 
                  "%H:%M:%S"), "Estimated time remaining:", format(.POSIXct(duration/is * 
                  (n_obs - is), tz = "GMT"), "%H:%M:%S"))
            }
            .updateProgressBar(pb, is/n_obs, text)
        }
    }
    if (progress_bar) {
        close(pb)
    }
    tab_param2 = matrix(0, dim(tab_param)[1], dim(tab_param)[2])
    for (i in 1:dim(tab_param)[1]) {
        for (j in 1:dim(tab_param)[2]) {
            tab_param2[i, j] = tab_param[i, j]
        }
    }
    tab_simul_summary_stat2 = matrix(0, dim(tab_simul_summary_stat)[1], dim(tab_simul_summary_stat)[2])
    for (i in 1:dim(tab_simul_summary_stat)[1]) {
        for (j in 1:dim(tab_simul_summary_stat)[2]) {
            tab_simul_summary_stat2[i, j] = tab_simul_summary_stat[i, j]
        }
    }
    tab_dist2 = array(0, length(tab_dist))
    for (i in 1:length(tab_dist)) {
        tab_dist2[i] = tab_dist[i]
    }
    list(param = as.matrix(tab_param2), stats = as.matrix(tab_simul_summary_stat2), 
        dist = tab_dist2, epsilon = max(tab_dist), nsim = (seed_count - seed_count_ini), 
        n_between_sampling = n_between_sampling, min_stats = myMin, max_stats = myMax, 
        lambda = lambda, geometric_mean = myGM, boxcox_mean = myBCMeans, boxcox_sd = myBCSDs, 
        pls_transform = pls_transformation, n_component = numcomp, computime = as.numeric(difftime(Sys.time(), 
            start, units = "secs")))
}

## FUNCTION ABC_mcmc: ABC coupled to MCMC (Marjoram et al. 2003, Wegmann et al.
## 2009)
.ABC_mcmc_internal <- function(method, model, prior, prior_test, n_obs, n_between_sampling, 
    summary_stat_target, use_seed, verbose, dist_weights=NULL, ...) {
    options(scipen = 50)
    return(switch(EXPR = method, Marjoram_original = .ABC_MCMC(model, prior, prior_test, 
        n_obs, n_between_sampling, summary_stat_target, use_seed, verbose, dist_weights=dist_weights, ...), 
        Marjoram = .ABC_MCMC2(model, prior, prior_test, n_obs, n_between_sampling, 
            summary_stat_target, use_seed, verbose, dist_weights=dist_weights, ...), Wegmann = .ABC_MCMC3(model, 
            prior, prior_test, n_obs, n_between_sampling, summary_stat_target, use_seed, 
            verbose, dist_weights=dist_weights, ...)))
    options(scipen = 0)
}

###################### parallel functions ###############
.ABC_rejection_internal_cluster <- function(model, prior, prior_test, nb_simul, seed_count = 0, 
    n_cluster = 1) {
    cl <- makeCluster(getOption("cl.cores", n_cluster))
    tab_simul_summarystat = NULL
    tab_param = NULL
    list_param = list(NULL)
    npar = floor(nb_simul/(100 * n_cluster))
    n_end = nb_simul - (npar * 100 * n_cluster)
    if (npar > 0) {
        for (irun in 1:npar) {
            for (i in 1:(100 * n_cluster)) {
                l = length(prior)
                param = .sample_prior(prior, prior_test)
                # if (use_seed) # NB: we force the value use_seed=TRUE
                param = c((seed_count + i), param)
                list_param[[i]] = param
                tab_param = rbind(tab_param, param[2:(l + 1)])
            }
            seed_count = seed_count + 100 * n_cluster
            list_simul_summarystat = parLapplyLB(cl, list_param, model)
            for (i in 1:(100 * n_cluster)) {
                tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
            }
        }
    }
    if (n_end > 0) {
        # stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
        list_param = list(NULL)
        for (i in 1:n_end) {
            l = length(prior)
            param = .sample_prior(prior, prior_test)
            # if (use_seed) # NB: we force the value use_seed=TRUE
            param = c((seed_count + i), param)
            list_param[[i]] = param
            tab_param = rbind(tab_param, param[2:(l + 1)])
        }
        seed_count = seed_count + n_end
        list_simul_summarystat = parLapplyLB(cl, list_param, model)
        for (i in 1:n_end) {
            tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
        }
        stopCluster(cl)
    } else {
        stopCluster(cl)
    }
    cbind(tab_param, tab_simul_summarystat)
}

## FUNCTION ABC_rejection: brute-force ABC (Pritchard et al. 1999)
.ABC_rejection_cluster <- function(model, prior, prior_test, nb_simul, seed_count = 0, 
    n_cluster = 1, verbose) {
    if (verbose) {
        write.table(NULL, file = "output", row.names = F, col.names = F, quote = F)
    }
    # library(parallel)
    start = Sys.time()
    options(scipen = 50)
    cl <- makeCluster(getOption("cl.cores", n_cluster))
    tab_simul_summarystat = NULL
    tab_param = NULL
    list_param = list(NULL)
    npar = floor(nb_simul/(100 * n_cluster))
    n_end = nb_simul - (npar * 100 * n_cluster)
    if (npar > 0) {
        for (irun in 1:npar) {
            paramtemp = NULL
            simultemp = NULL
            for (i in 1:(100 * n_cluster)) {
                l = length(prior)
                param = .sample_prior(prior, prior_test)
                # if (use_seed) # NB: we force the value use_seed=TRUE
                param = c((seed_count + i), param)
                list_param[[i]] = param
                tab_param = rbind(tab_param, param[2:(l + 1)])
                paramtemp = rbind(paramtemp, param[2:(l + 1)])
            }
            seed_count = seed_count + n_cluster
            list_simul_summarystat = parLapplyLB(cl, list_param, model)
            for (i in 1:(100 * n_cluster)) {
                tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
                simultemp = rbind(simultemp, as.numeric(list_simul_summarystat[[i]]))
            }
            if (verbose) {
                intermed = cbind(as.matrix(paramtemp), as.matrix(simultemp))
                write.table(intermed, file = "output", row.names = F, col.names = F, 
                  quote = F, append = T)
            }
        }
    }
    if (n_end > 0) {
        # stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
        list_param = list(NULL)
        paramtemp = NULL
        simultemp = NULL
        for (i in 1:n_end) {
            l = length(prior)[1]
            param = .sample_prior(prior, prior_test)
            # if (use_seed) # NB: we force the value use_seed=TRUE
            param = c((seed_count + i), param)
            list_param[[i]] = param
            tab_param = rbind(tab_param, param[2:(l + 1)])
            paramtemp = rbind(paramtemp, param[2:(l + 1)])
        }
        seed_count = seed_count + n_end
        list_simul_summarystat = parLapplyLB(cl, list_param, model)
        for (i in 1:n_end) {
            tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
            simultemp = rbind(simultemp, as.numeric(list_simul_summarystat[[i]]))
        }
        if (verbose) {
            intermed = cbind(as.matrix(paramtemp), as.matrix(simultemp))
            write.table(intermed, file = "output", row.names = F, col.names = F, 
                quote = F, append = T)
        }
        stopCluster(cl)
    } else {
        stopCluster(cl)
    }
    options(scipen = 0)
    sd_simul = sapply(as.data.frame(tab_simul_summarystat), sd)
    list(param = as.matrix(tab_param), stats = as.matrix(tab_simul_summarystat), 
        weights = array(1/nb_simul, nb_simul), stats_normalization = as.numeric(sd_simul), 
        nsim = nb_simul, computime = as.numeric(difftime(Sys.time(), start, units = "secs")))
}

## function to perform ABC simulations from a non-uniform prior (derived from a
## set of particles)
.ABC_launcher_not_uniform_cluster <- function(model, prior, param_previous_step, 
    tab_weight, nb_simul, seed_count, inside_prior, n_cluster, max_pick=10000) {
    tab_simul_summarystat = NULL
    tab_param = NULL
    cl <- makeCluster(getOption("cl.cores", n_cluster))
    list_param = list(NULL)
    npar = floor(nb_simul/(100 * n_cluster))
    n_end = nb_simul - (npar * 100 * n_cluster)
    if (npar > 0) {
        for (irun in 1:npar) {
            for (i in 1:(100 * n_cluster)) {
                l = dim(param_previous_step)[2]
                if (!inside_prior) {
                  # pick a particle
                  param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)), 
                    tab_weight)
                  # move it
                  param_moved = .move_particle(as.numeric(param_picked), 2 * cov.wt(as.matrix(as.matrix(param_previous_step)), 
                    as.vector(tab_weight))$cov)  # only variable parameters are moved, computation of a WEIGHTED variance
                } else {
                  test = FALSE
                  counter = 0
                  while ((!test) && (counter < max_pick)) {
                    counter = counter + 1
                    # pick a particle
                    param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)), 
                      tab_weight)
                    # move it
                    param_moved = .move_particle(as.numeric(param_picked), 2 * cov.wt(as.matrix(as.matrix(param_previous_step)), 
                      as.vector(tab_weight))$cov)  # only variable parameters are moved, computation of a WEIGHTED variance
                    test = .is_included(param_moved, prior)
                  }
                  if (counter == max_pick) {
                    stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
                  }
                }
                param = param_previous_step[1, ]
                param = param_moved
                param = c((seed_count + i), param)
                list_param[[i]] = param
                tab_param = rbind(tab_param, param[2:(l + 1)])
            }
            seed_count = seed_count + 100 * n_cluster
            list_simul_summarystat = parLapplyLB(cl, list_param, model)
            for (i in 1:(100 * n_cluster)) {
                tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
            }
        }
    }
    if (n_end > 0) {
        # stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
        list_param = list(NULL)
        for (i in 1:n_end) {
            l = dim(param_previous_step)[2]
            if (!inside_prior) {
                # pick a particle
                param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)), 
                  tab_weight)
                # move it
                param_moved = .move_particle(as.numeric(param_picked), 2 * cov.wt(as.matrix(as.matrix(param_previous_step)), 
                  as.vector(tab_weight))$cov)  # only variable parameters are moved, computation of a WEIGHTED variance
            } else {
                test = FALSE
                counter = 0
                while ((!test) && (counter < max_pick)) {
                  counter = counter + 1
                  # pick a particle
                  param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)), 
                    tab_weight)
                  # move it
                  param_moved = .move_particle(as.numeric(param_picked), 2 * cov.wt(as.matrix(as.matrix(param_previous_step)), 
                    as.vector(tab_weight))$cov)  # only variable parameters are moved, computation of a WEIGHTED variance
                  test = .is_included(param_moved, prior)
                }
                if (counter == max_pick) {
                  stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
                }
            }
            param = param_previous_step[1, ]
            param = param_moved
            param = c((seed_count + i), param)
            list_param[[i]] = param
            tab_param = rbind(tab_param, param[2:(l + 1)])
        }
        seed_count = seed_count + n_end
        list_simul_summarystat = parLapplyLB(cl, list_param, model)
        for (i in 1:n_end) {
            tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
        }
        stopCluster(cl)
    } else {
        stopCluster(cl)
    }
    cbind(tab_param, tab_simul_summarystat)
}

## function to perform ABC simulations from a non-uniform prior and with
## unidimensional jumps
.ABC_launcher_not_uniform_uni_cluster <- function(model, prior, param_previous_step, 
    tab_weight, nb_simul, seed_count, inside_prior, n_cluster, max_pick=10000) {
    tab_simul_summarystat = NULL
    tab_param = NULL
    cl <- makeCluster(getOption("cl.cores", n_cluster))
    list_param = list(NULL)
    npar = floor(nb_simul/(100 * n_cluster))
    n_end = nb_simul - (npar * 100 * n_cluster)
    l = dim(param_previous_step)[2]
    l_array = dim(param_previous_step)[2]
    if (is.null(l_array)) {
        l_array = 1
    }
    sd_array = array(1, l_array)
    covmat = 2 * cov.wt(as.matrix(as.matrix(param_previous_step)), as.vector(tab_weight))$cov  # computation of a WEIGHTED variance
    for (j in 1:l_array) {
        sd_array[j] = sqrt(covmat[j, j])
    }
    if (npar > 0) {
        for (irun in 1:npar) {
            for (i in 1:(100 * n_cluster)) {
                if (!inside_prior) {
                  # pick a particle
                  param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)), 
                    tab_weight)
                  # move it
                  param_moved = .move_particle_uni(as.numeric(param_picked), sd_array)  # only variable parameters are moved
                } else {
                  test = FALSE
                  counter = 0
                  while ((!test) && (counter < max_pick)) {
                    counter = counter + 1
                    # pick a particle
                    param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)), 
                      tab_weight)
                    # move it
                    param_moved = .move_particle_uni(as.numeric(param_picked), sd_array)  # only variable parameters are moved
                    test = .is_included(param_moved, prior)
                  }
                  if (counter == max_pick) {
                    stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
                  }
                }
                param = param_previous_step[1, ]
                param = param_moved
                param = c((seed_count + i), param)
                list_param[[i]] = param
                tab_param = rbind(tab_param, param[2:(l + 1)])
            }
            seed_count = seed_count + 100 * n_cluster
            list_simul_summarystat = parLapplyLB(cl, list_param, model)
            for (i in 1:(100 * n_cluster)) {
                tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
            }
        }
    }
    if (n_end > 0) {
        # stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
        list_param = list(NULL)
        for (i in 1:n_end) {
            if (!inside_prior) {
                # pick a particle
                param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)), 
                  tab_weight)
                # move it
                param_moved = .move_particle_uni(as.numeric(param_picked), sd_array)  # only variable parameters are moved
            } else {
                test = FALSE
                counter = 0
                while ((!test) && (counter < max_pick)) {
                  counter = counter + 1
                  # pick a particle
                  param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)), 
                    tab_weight)
                  # move it
                  param_moved = .move_particle_uni(as.numeric(param_picked), sd_array)  # only variable parameters are moved
                  test = .is_included(param_moved, prior)
                }
                if (counter == max_pick) {
                  stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
                }
            }
            param = param_previous_step[1, ]
            param = param_moved
            param = c((seed_count + i), param)
            list_param[[i]] = param
            tab_param = rbind(tab_param, param[2:(l + 1)])
        }
        seed_count = seed_count + n_end
        list_simul_summarystat = parLapplyLB(cl, list_param, model)
        for (i in 1:n_end) {
            tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
        }
        stopCluster(cl)
    } else {
        stopCluster(cl)
    }
    cbind(tab_param, tab_simul_summarystat)
}

## PMC ABC algorithm: Beaumont et al. Biometrika 2009
.ABC_PMC_cluster <- function(model, prior, prior_test, nb_simul, summary_stat_target, 
    n_cluster, verbose, dist_weights=NULL, seed_count = 0, inside_prior = TRUE, tolerance_tab = -1, 
    progress_bar = FALSE, max_pick=10000) {
    ## checking errors in the inputs
    if (!is.vector(seed_count)) 
        stop("'seed_count' has to be a number.")
    if (length(seed_count) > 1) 
        stop("'seed_count' has to be a number.")
    if (seed_count < 0) 
        stop("'seed_count' has to be a positive number.")
    seed_count = floor(seed_count)
    if (!is.logical(inside_prior)) 
        stop("'inside_prior' has to be boolean.")
    if (!is.vector(tolerance_tab)) 
        stop("'tolerance_tab' has to be a vector.")
    if (tolerance_tab[1] == -1) 
        stop("'tolerance_tab' is missing")
    if (min(tolerance_tab) <= 0) 
        stop("tolerance values have to be strictly positive.")
    lll = length(tolerance_tab)
    if (lll <= 1) 
        stop("at least two tolerance values need to be provided.")
    if (min(tolerance_tab[1:(lll - 1)] - tolerance_tab[2:lll]) <= 0) 
        stop("tolerance values have to decrease.")
    if (progress_bar) {
        print("    ------ Beaumont et al. (2009)'s algorithm ------")
    }
    start = Sys.time()
    seed_count_ini = seed_count
    T = length(tolerance_tab)
    nparam = length(prior)
    nstat = length(summary_stat_target)
    ## step 1
    nb_simul_step = nb_simul
    simul_below_tol = NULL
    while (nb_simul_step > 0) {
        if (nb_simul_step > 1) {
            # classic ABC step
            tab_ini = .ABC_rejection_internal_cluster(model, prior, prior_test, nb_simul_step, 
                seed_count, n_cluster)
            if (nb_simul_step == nb_simul) {
                sd_simul = sapply(as.data.frame(tab_ini[, (nparam + 1):(nparam + 
                  nstat)]), sd)  # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
            }
            seed_count = seed_count + nb_simul_step
            # selection of simulations below the first tolerance level
            simul_below_tol = rbind(simul_below_tol, .selec_simul(summary_stat_target, 
                as.matrix(as.matrix(tab_ini)[, 1:nparam]), as.matrix(as.matrix(tab_ini)[, 
                  (nparam + 1):(nparam + nstat)]), sd_simul, tolerance_tab[1], dist_weights=dist_weights))
            if (length(simul_below_tol) > 0) {
                nb_simul_step = nb_simul - dim(simul_below_tol)[1]
            }
        } else {
            tab_ini = .ABC_rejection_internal_cluster(model, prior, prior_test, nb_simul_step, 
                seed_count, n_cluster)
            seed_count = seed_count + nb_simul_step
            if (.compute_dist(summary_stat_target, tab_ini[(nparam + 1):(nparam + 
                nstat)], sd_simul, dist_weights=dist_weights) < tolerance_tab[1]) {
                simul_below_tol = rbind(simul_below_tol, tab_ini)
                nb_simul_step = 0
            }
        }
    }  # until we get nb_simul simulations below the first tolerance threshold
    # initially, weights are equal
    tab_weight = array(1/nb_simul, nb_simul)
    intermediary_steps = list(NULL)
    if (verbose == TRUE) {
        write.table(cbind(tab_weight, simul_below_tol), file = "output_step1", row.names = F, 
            col.names = F, quote = F)
        write.table((seed_count - seed_count_ini), file = "n_simul_tot_step1", row.names = F, 
            col.names = F, quote = F)
        intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - seed_count_ini), 
            posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
    }
    if (progress_bar) {
        print("step 1 completed")
    }
    ## steps 2 to T
    for (it in 2:T) {
        nb_simul_step = nb_simul
        simul_below_tol2 = NULL
        while (nb_simul_step > 0) {
            if (nb_simul_step > 1) {
                # Sampling of parameters around the previous particles
                tab_ini = .ABC_launcher_not_uniform_uni_cluster(model, prior, as.matrix(as.matrix(simul_below_tol)[, 
                  1:nparam]), tab_weight, nb_simul_step, seed_count, inside_prior, 
                  n_cluster, max_pick)
                seed_count = seed_count + nb_simul_step
                simul_below_tol2 = rbind(simul_below_tol2, .selec_simul(summary_stat_target, 
                  as.matrix(as.matrix(tab_ini)[, 1:nparam]), as.matrix(as.matrix(tab_ini)[, 
                    (nparam + 1):(nparam + nstat)]), sd_simul, tolerance_tab[it], dist_weights=dist_weights))
                if (length(simul_below_tol2) > 0) {
                  nb_simul_step = nb_simul - dim(simul_below_tol2)[1]
                }
            } else {
                tab_ini = .ABC_launcher_not_uniform_uni_cluster(model, prior, as.matrix(as.matrix(simul_below_tol)[, 
                  1:nparam]), tab_weight, nb_simul_step, seed_count, inside_prior, 
                  n_cluster, max_pick)
                seed_count = seed_count + nb_simul_step
                if (.compute_dist(summary_stat_target, tab_ini[(nparam + 1):(nparam + 
                  nstat)], sd_simul, dist_weights=dist_weights) < tolerance_tab[it]) {
                  simul_below_tol2 = rbind(simul_below_tol2, tab_ini)
                  nb_simul_step = 0
                }
            }
        }  # until we get nb_simul simulations below the it-th tolerance threshold
        # update of particle weights
        tab_weight2 = .compute_weight_uni(as.matrix(as.matrix(as.matrix(simul_below_tol2)[, 
            1:nparam])), as.matrix(as.matrix(as.matrix(simul_below_tol)[, 1:nparam])), 
            tab_weight, prior)
        # update of the set of particles and of the associated weights for the next ABC
        # sequence
        tab_weight = tab_weight2
        simul_below_tol = matrix(0, nb_simul, (nparam + nstat))
        for (i1 in 1:nb_simul) {
            for (i2 in 1:(nparam + nstat)) {
                simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[i1, i2])
            }
        }
        if (verbose == TRUE) {
            write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = paste("output_step", 
                it, sep = ""), row.names = F, col.names = F, quote = F)
            write.table((seed_count - seed_count_ini), file = paste("n_simul_tot_step", 
                it, sep = ""), row.names = F, col.names = F, quote = F)
            intermediary_steps[[it]] = list(n_simul_tot = as.numeric(seed_count - 
                seed_count_ini), posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
        }
        if (progress_bar) {
            print(paste("step ", it, " completed", sep = ""))
        }
    }
    final_res = NULL
    if (verbose == TRUE) {
        final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), 
            stats = as.matrix(as.matrix(as.matrix(simul_below_tol))[, (nparam + 1):(nparam + 
                nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul), 
            epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count - 
                seed_count_ini), computime = as.numeric(difftime(Sys.time(), start, 
                units = "secs")), intermediary = intermediary_steps)
    } else {
        final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), 
            stats = as.matrix(as.matrix(as.matrix(simul_below_tol))[, (nparam + 1):(nparam + 
                nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul), 
            epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count - 
                seed_count_ini), computime = as.numeric(difftime(Sys.time(), start, 
                units = "secs")))
    }
    final_res
}

.move_drovandi_ini_cluster <- function(nb_simul_step, simul_below_tol, tab_weight, 
    nparam, nstat, prior, summary_stat_target, tol_next, dist_weights, seed_count, n_cluster, model, 
    sd_simul, max_pick=10000) {
    i_acc = 0
    res = NULL
    npar = floor(nb_simul_step/(100 * n_cluster))
    n_end = nb_simul_step - (npar * 100 * n_cluster)
    l = length(prior)
    list_param = list(NULL)
    cl <- makeCluster(getOption("cl.cores", n_cluster))
    if (npar > 0) {
        for (irun in 1:npar) {
            tab_param = NULL
            tab_picked = NULL
            for (i in 1:(100 * n_cluster)) {
                # pick a particle
                simul_picked = .particle_pick(simul_below_tol, tab_weight)
                # move it
                param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(as.matrix(simul_below_tol)[, 
                  1:nparam]))), prior, max_pick)
                param = simul_picked[1:nparam]
                param = param_moved
                param = c((seed_count + i), param)
                tab_param = rbind(tab_param, param[2:(l + 1)])
                list_param[[i]] = param
                tab_picked = rbind(tab_picked, as.numeric(simul_picked))
            }
            seed_count = seed_count + n_cluster
            # perform simulations
            list_simul_summarystat = parLapplyLB(cl, list_param, model)
            for (i in 1:(100 * n_cluster)) {
                # check whether it is below tol_next and undo the move if it is not
                new_simul = c(as.numeric(tab_param[i, ]), as.numeric(list_simul_summarystat[[i]]))
                if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam + 
                  1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
                  # we authorize the simulation to be equal to the tolerance level, for consistency
                  # with the quantile definition of the tolerance
                  tab_picked[i, ] = as.numeric(new_simul)
                  i_acc = i_acc + 1
                }
            }
            res = rbind(res, tab_picked)
        }
    }
    if (n_end > 0) {
        # stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
        list_param = list(NULL)
        tab_picked = NULL
        tab_param = NULL
        for (i in 1:n_end) {
            # pick a particle
            simul_picked = .particle_pick(simul_below_tol, tab_weight)
            # move it
            param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(as.matrix(simul_below_tol)[, 
                1:nparam]))), prior, max_pick)
            param = simul_picked[1:nparam]
            param = param_moved
            param = c((seed_count + i), param)
            tab_param = rbind(tab_param, param[2:(l + 1)])
            list_param[[i]] = param
            tab_picked = rbind(tab_picked, as.numeric(simul_picked))
        }
        seed_count = seed_count + n_end
        # perform simulations
        list_simul_summarystat = parLapplyLB(cl, list_param, model)
        for (i in 1:n_end) {
            # check whether it is below tol_next and undo the move if it is not
            new_simul = c(as.numeric(tab_param[i, ]), as.numeric(list_simul_summarystat[[i]]))
            if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam + 
                1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
                # we authorize the simulation to be equal to the tolerance level, for consistency
                # with the quantile definition of the tolerance
                tab_picked[i, ] = as.numeric(new_simul)
                i_acc = i_acc + 1
            }
        }
        res = rbind(res, tab_picked)
        stopCluster(cl)
    } else {
        stopCluster(cl)
    }
    list(res, i_acc)
}

.move_drovandi_end_cluster <- function(nb_simul_step, new_particles, nparam, nstat, 
    prior, summary_stat_target, tol_next, dist_weights, seed_count, n_cluster, model, sd_simul, max_pick=10000) {
    i_acc = 0
    res = NULL
    npar = floor(nb_simul_step/(100 * n_cluster))
    n_end = nb_simul_step - (npar * 100 * n_cluster)
    l = length(prior)
    list_param = list(NULL)
    cl <- makeCluster(getOption("cl.cores", n_cluster))
    if (npar > 0) {
        for (irun in 1:npar) {
            tab_param = NULL
            tab_picked = NULL
            for (i in 1:(100 * n_cluster)) {
                # pick a particle
                simul_picked = new_particles[((irun - 1) * n_cluster + i), ]
                # move it
                param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(as.matrix(new_particles)[, 
                  1:nparam]))), prior, max_pick)
                param = simul_picked[1:nparam]
                param = param_moved
                param = c((seed_count + i), param)
                tab_param = rbind(tab_param, param[2:(l + 1)])
                list_param[[i]] = param
                tab_picked = rbind(tab_picked, as.numeric(simul_picked))
            }
            seed_count = seed_count + 100 * n_cluster
            # perform simulations
            list_simul_summarystat = parLapplyLB(cl, list_param, model)
            for (i in 1:(100 * n_cluster)) {
                # check whether it is below tol_next and undo the move if it is not
                new_simul = c(as.numeric(tab_param[i, ]), as.numeric(list_simul_summarystat[[i]]))
                if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam + 
                  1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
                  # we authorize the simulation to be equal to the tolerance level, for consistency
                  # with the quantile definition of the tolerance
                  tab_picked[i, ] = as.numeric(new_simul)
                  i_acc = i_acc + 1
                }
            }
            res = rbind(res, tab_picked)
        }
    }
    if (n_end > 0) {
        # stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
        list_param = list(NULL)
        tab_picked = NULL
        tab_param = NULL
        for (i in 1:n_end) {
            # pick a particle
            simul_picked = new_particles[(npar * n_cluster + i), ]
            # move it
            param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(as.matrix(new_particles)[, 
                1:nparam]))), prior, max_pick)
            param = simul_picked[1:nparam]
            param = param_moved
            param = c((seed_count + i), param)
            tab_param = rbind(tab_param, param[2:(l + 1)])
            list_param[[i]] = param
            tab_picked = rbind(tab_picked, as.numeric(simul_picked))
        }
        seed_count = seed_count + n_end
        # perform simulations
        list_simul_summarystat = parLapplyLB(cl, list_param, model)
        for (i in 1:n_end) {
            # check whether it is below tol_next and undo the move if it is not
            new_simul = c(as.numeric(tab_param[i, ]), as.numeric(list_simul_summarystat[[i]]))
            if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam + 
                1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
                # we authorize the simulation to be equal to the tolerance level, for consistency
                # with the quantile definition of the tolerance
                tab_picked[i, ] = as.numeric(new_simul)
                i_acc = i_acc + 1
            }
        }
        res = rbind(res, tab_picked)
        stopCluster(cl)
    } else {
        stopCluster(cl)
    }
    list(res, i_acc)
}

.move_drovandi_diversify_cluster <- function(nb_simul_step, new_particles, nparam, 
    nstat, prior, summary_stat_target, tol_next, dist_weights, seed_count, n_cluster, model, sd_simul, max_pick=10000) {
    i_acc = 0
    res = NULL
    npar = floor(nb_simul_step/(100 * n_cluster))
    n_end = nb_simul_step - (npar * 100 * n_cluster)
    l = length(prior)
    list_param = list(NULL)
    cl <- makeCluster(getOption("cl.cores", n_cluster))
    if (npar > 0) {
        for (irun in 1:npar) {
            tab_param = NULL
            tab_picked = NULL
            for (i in 1:(100 * n_cluster)) {
                # pick a particle
                simul_picked = new_particles[((irun - 1) * n_cluster + i), ]
                # move it
                param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(as.matrix(new_particles)[, 
                  1:nparam]))), prior, max_pick)
                param = simul_picked[1:nparam]
                param = param_moved
                param = c((seed_count + i), param)
                tab_param = rbind(tab_param, param[2:(l + 1)])
                list_param[[i]] = param
                tab_picked = rbind(tab_picked, as.numeric(simul_picked))
            }
            seed_count = seed_count + 100 * n_cluster
            # perform simulations
            list_simul_summarystat = parLapplyLB(cl, list_param, model)
            for (i in 1:(100 * n_cluster)) {
                # check whether it is below tol_next and undo the move if it is not
                new_simul = c(as.numeric(tab_param[i, ]), as.numeric(list_simul_summarystat[[i]]))
                if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam + 
                  1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
                  # we authorize the simulation to be equal to the tolerance level, for consistency
                  # with the quantile definition of the tolerance
                  tab_picked[i, ] = as.numeric(new_simul)
                  i_acc = i_acc + 1
                }
            }
            res = rbind(res, tab_picked)
        }
    }
    if (n_end > 0) {
        # stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
        list_param = list(NULL)
        tab_picked = NULL
        tab_param = NULL
        for (i in 1:n_end) {
            # pick a particle
            simul_picked = new_particles[(npar * n_cluster + i), ]
            # move it
            param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(as.matrix(new_particles)[, 
                1:nparam]))), prior, max_pick)
            param = simul_picked[1:nparam]
            param = param_moved
            param = c((seed_count + i), param)
            tab_param = rbind(tab_param, param[2:(l + 1)])
            list_param[[i]] = param
            tab_picked = rbind(tab_picked, as.numeric(simul_picked))
        }
        seed_count = seed_count + n_end
        # perform simulations
        list_simul_summarystat = parLapplyLB(cl, list_param, model)
        for (i in 1:n_end) {
            # check whether it is below tol_next and undo the move if it is not
            new_simul = c(as.numeric(tab_param[i, ]), as.numeric(list_simul_summarystat[[i]]))
            if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam + 
                1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
                # we authorize the simulation to be equal to the tolerance level, for consistency
                # with the quantile definition of the tolerance
                tab_picked[i, ] = as.numeric(new_simul)
                i_acc = i_acc + 1
            }
        }
        res = rbind(res, tab_picked)
        stopCluster(cl)
    } else {
        stopCluster(cl)
    }
    res
}

## sequential algorithm of Drovandi & Pettitt 2011 - the proposal used is a
## multivariate normal (cf paragraph 2.2 - p. 227 in Drovandi & Pettitt 2011)
.ABC_Drovandi_cluster <- function(model, prior, prior_test, nb_simul, summary_stat_target, 
    n_cluster, verbose, dist_weights=NULL, seed_count = 0, tolerance_tab = -1, alpha = 0.5, c = 0.01, 
    first_tolerance_level_auto = TRUE, progress_bar = FALSE, max_pick=10000) {
    ## checking errors in the inputs
    if (!is.vector(seed_count)) 
        stop("'seed_count' has to be a number.")
    if (length(seed_count) > 1) 
        stop("'seed_count' has to be a number.")
    if (seed_count < 0) 
        stop("'seed_count' has to be a positive number.")
    seed_count = floor(seed_count)
    if (!is.vector(tolerance_tab)) 
        stop("'tolerance_tab' has to be a vector.")
    if (tolerance_tab[1] == -1) 
        stop("'tolerance_tab' is missing")
    if (min(tolerance_tab) <= 0) 
        stop("tolerance values have to be strictly positive.")
    if (!is.vector(alpha)) 
        stop("'alpha' has to be a number.")
    if (length(alpha) > 1) 
        stop("'alpha' has to be a number.")
    if (alpha <= 0) 
        stop("'alpha' has to be between 0 and 1.")
    if (alpha >= 1) 
        stop("'alpha' has to be between 0 and 1.")
    if (!is.vector(c)) 
        stop("'c' has to be a vector.")
    if (length(c) > 1) 
        stop("'c' has to be a number.")
    if (c <= 0) 
        stop("'c' has to be between 0 and 1.")
    if (c >= 1) 
        stop("'c' has to be between 0 and 1.")
    if (!is.logical(first_tolerance_level_auto)) 
        stop("'first_tolerance_level_auto' has to be boolean.")
    if (progress_bar) {
        print("    ------ Drovandi & Pettitt (2011)'s algorithm ------")
    }
    start = Sys.time()
    seed_count_ini = seed_count
    n_alpha = ceiling(nb_simul * alpha)
    nparam = length(prior)
    nstat = length(summary_stat_target)
    if (first_tolerance_level_auto) {
        tol_end = tolerance_tab[1]
    } else {
        tol_end = tolerance_tab[2]
    }
    ## step 1
    nb_simul_step = ceiling(nb_simul/(1 - alpha))
    simul_below_tol = NULL
    if (first_tolerance_level_auto) {
        # classic ABC step
        tab_ini = .ABC_rejection_internal_cluster(model, prior, prior_test, nb_simul_step, 
            seed_count, n_cluster)
        sd_simul = sapply(as.data.frame(tab_ini[, (nparam + 1):(nparam + nstat)]), 
            sd)  # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
        seed_count = seed_count + nb_simul_step
        # selection of simulations below the first tolerance level
        simul_below_tol = rbind(simul_below_tol, .selec_simul_alpha(summary_stat_target, 
            as.matrix(as.matrix(tab_ini)[, 1:nparam]), as.matrix(as.matrix(tab_ini)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, (1 - alpha), dist_weights=dist_weights))
        simul_below_tol = simul_below_tol[1:nb_simul, ]  # to be sure that there are not two or more simulations at a distance equal to the tolerance determined by the quantile
    } else {
        nb_simul_step = nb_simul
        while (nb_simul_step > 0) {
            if (nb_simul_step > 1) {
                # classic ABC step
                tab_ini = .ABC_rejection_internal_cluster(model, prior, prior_test, 
                  nb_simul_step, seed_count, n_cluster)
                if (nb_simul_step == nb_simul) {
                  sd_simul = sapply(as.data.frame(tab_ini[, (nparam + 1):(nparam + 
                    nstat)]), sd)  # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
                }
                seed_count = seed_count + nb_simul_step
                # selection of simulations below the first tolerance level
                simul_below_tol = rbind(simul_below_tol, .selec_simulb(summary_stat_target, 
                  as.matrix(as.matrix(tab_ini)[, 1:nparam]), as.matrix(as.matrix(tab_ini)[, 
                    (nparam + 1):(nparam + nstat)]), sd_simul, tolerance_tab[1], dist_weights=dist_weights))  # we authorize the simulation to be equal to the tolerance level, for consistency with the quantile definition of the tolerance
                if (length(simul_below_tol) > 0) {
                  nb_simul_step = nb_simul - dim(simul_below_tol)[1]
                }
            } else {
                tab_ini = .ABC_rejection_internal_cluster(model, prior, prior_test, 
                  nb_simul_step, seed_count, n_cluster)
                seed_count = seed_count + nb_simul_step
                if (.compute_dist(summary_stat_target, tab_ini[(nparam + 1):(nparam + 
                  nstat)], sd_simul, dist_weights=dist_weights) <= tolerance_tab[1]) {
                  simul_below_tol = rbind(simul_below_tol, tab_ini)
                  nb_simul_step = 0
                }
            }
        }  # until we get nb_simul simulations below the first tolerance threshold
    }
    # initially, weights are equal
    tab_weight = array(1/nb_simul, nb_simul)
    intermediary_steps = list(NULL)
    if (verbose == TRUE) {
        write.table(cbind(tab_weight, simul_below_tol), file = "output_step1", row.names = F, 
            col.names = F, quote = F)
        write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1", 
            row.names = F, col.names = F, quote = F)
        intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - seed_count_ini), 
            posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
    }
    if (progress_bar) {
        print("step 1 completed")
    }
    ## following steps until tol_end is reached
    tol_next = tolerance_tab[1]
    if (first_tolerance_level_auto) {
        tol_next = max(.compute_dist(summary_stat_target, simul_below_tol[, (nparam + 
            1):(nparam + nstat)], sd_simul, dist_weights=dist_weights))
    }
    R = 1
    l = dim(simul_below_tol)[2]
    it = 1
    while (tol_next > tol_end) {
        it = it + 1
        i_acc = 0
        nb_simul_step = n_alpha
        # compute epsilon_next
        tol_next = sort(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
            (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights))[(nb_simul - n_alpha)]
        # drop the n_alpha poorest particles
        simul_below_tol2 = .selec_simulb(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
            1:nparam]), as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + 
            nstat)]), sd_simul, tol_next, dist_weights=dist_weights)  # we authorize the simulation to be equal to the tolerance level, for consistency with the quantile definition of the tolerance
        simul_below_tol = matrix(0, (nb_simul - n_alpha), (nparam + nstat))
        for (i1 in 1:(nb_simul - n_alpha)) {
            for (i2 in 1:(nparam + nstat)) {
                simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[i1, i2])
            }
        }
        md = .move_drovandi_ini_cluster(nb_simul_step, simul_below_tol, tab_weight[1:(nb_simul - 
            n_alpha)], nparam, nstat, prior, summary_stat_target, tol_next, dist_weights, seed_count, 
            n_cluster, model, sd_simul, max_pick)
        new_particles = md[[1]]
        i_acc = i_acc + md[[2]]
        seed_count = seed_count + nb_simul_step
        if (R > 1) {
            for (j in 2:R) {
                md = .move_drovandi_end_cluster(nb_simul_step, new_particles, nparam, 
                  nstat, prior, summary_stat_target, tol_next, dist_weights, seed_count, n_cluster, 
                  model, sd_simul, max_pick)
                new_particles = md[[1]]
                i_acc = i_acc + md[[2]]
                seed_count = seed_count + nb_simul_step
            }
        }
        simul_below_tol3 = matrix(0, nb_simul, (nparam + nstat))
        for (i1 in 1:(nb_simul - n_alpha)) {
            for (i2 in 1:(nparam + nstat)) {
                simul_below_tol3[i1, i2] = as.numeric(simul_below_tol[i1, i2])
            }
        }
        for (i1 in (nb_simul - n_alpha + 1):nb_simul) {
            for (i2 in 1:(nparam + nstat)) {
                simul_below_tol3[i1, i2] = as.numeric(new_particles[(i1 - nb_simul + 
                  n_alpha), i2])
            }
        }
        simul_below_tol = simul_below_tol3
        p_acc = max(1, i_acc)/(nb_simul_step * R)  # to have a strictly positive p_acc
        Rp = R
        if (p_acc < 1) {
            R = ceiling(log(c)/log(1 - p_acc))
        } else {
            R = 1
        }
        if (verbose == TRUE) {
            write.table(as.numeric(tol_next), file = paste("tolerance_step", it, 
                sep = ""), row.names = F, col.names = F, quote = F)
            write.table(as.numeric(Rp), file = paste("R_step", it, sep = ""), row.names = F, 
                col.names = F, quote = F)
            write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step", 
                it, sep = ""), row.names = F, col.names = F, quote = F)
            write.table(cbind(tab_weight, simul_below_tol), file = paste("output_step", 
                it, sep = ""), row.names = F, col.names = F, quote = F)
            intermediary_steps[[it]] = list(n_simul_tot = as.numeric(seed_count - 
                seed_count_ini), R_step = as.numeric(Rp), tol_step = as.numeric(tol_next), 
                posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
        }
        tol_next = max(.compute_dist(summary_stat_target, simul_below_tol[, (nparam + 
            1):(nparam + nstat)], sd_simul, dist_weights=dist_weights))
        if (progress_bar) {
            print(paste("step ", it, " completed - R used = ", Rp, " - tol = ", tol_next, 
                " - next R used will be ", R, sep = ""))
        }
    }
    ## final step to diversify the n_alpha particles
    simul_below_tol2 = NULL
    for (j in 1:R) {
        simul_below_tol = .move_drovandi_diversify_cluster(nb_simul, simul_below_tol, 
            nparam, nstat, prior, summary_stat_target, tol_next, dist_weights, seed_count, n_cluster, 
            model, sd_simul, max_pick)
        seed_count = seed_count + nb_simul
    }
    final_res = NULL
    if (verbose == TRUE) {
        final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), 
            stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + 
                nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul), 
            epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count - 
                seed_count_ini), computime = as.numeric(difftime(Sys.time(), start, 
                units = "secs")), intermediary = intermediary_steps)
    } else {
        final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), 
            stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + 
                nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul), 
            epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count - 
                seed_count_ini), computime = as.numeric(difftime(Sys.time(), start, 
                units = "secs")))
    }
    final_res
}

## rejection algorithm with M simulations per parameter set
.ABC_rejection_M_cluster <- function(model, prior, prior_test, nb_simul, M, seed_count, 
    n_cluster) {
    tab_simul_summarystat = NULL
    tab_param = NULL
    list_param = list(NULL)
    npar = floor(nb_simul * M/(100 * n_cluster))
    n_end = nb_simul * M - (npar * 100 * n_cluster)
    cl <- makeCluster(getOption("cl.cores", n_cluster))
    l = length(prior)
    param2 = array(0, (l + 1))
    if (npar > 0) {
        for (irun in 1:npar) {
            for (irun2 in 1:(100 * n_cluster)) {
                ii = (100 * n_cluster * (irun - 1) + irun2)%%M
                if ((ii == 1) || (M == 1)) {
                  param = .sample_prior(prior, prior_test)
                  param2 = c((seed_count + 1), param)
                  seed_count = seed_count + 1
                } else {
                  param2[1] = param2[1] + 1
                  seed_count = seed_count + 1
                }
                list_param[[irun2]] = param2
                tab_param = rbind(tab_param, param2[2:(l + 1)])
            }
            list_simul_summarystat = parLapplyLB(cl, list_param, model)
            for (i in 1:(100 * n_cluster)) {
                tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
            }
        }
    }
    if (n_end > 0) {
        list_param = list(NULL)
        for (irun2 in 1:n_end) {
            ii = (100 * n_cluster * npar + irun2)%%M
            if ((ii == 1) || (M == 1)) {
                param = .sample_prior(prior, prior_test)
                param2 = c((seed_count + 1), param)
                seed_count = seed_count + 1
            } else {
                param2[1] = param2[1] + 1
                seed_count = seed_count + 1
            }
            list_param[[irun2]] = param2
            tab_param = rbind(tab_param, param2[2:(l + 1)])
        }
        list_simul_summarystat = parLapplyLB(cl, list_param, model)
        for (i in 1:n_end) {
            tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
        }
    }
    stopCluster(cl)
    cbind(tab_param, tab_simul_summarystat)
}

## sequential algorithm of Del Moral et al. 2012 - the proposal used is a normal
## in each dimension (cf paragraph 3.2 in Del Moral et al. 2012)
.ABC_Delmoral_cluster <- function(model, prior, prior_test, nb_simul, summary_stat_target, 
    n_cluster, verbose, alpha = 0.9, M = 1, nb_threshold = floor(nb_simul/2), tolerance_target = -1, 
    dist_weights=NULL, seed_count = 0, progress_bar = FALSE, max_pick=10000) {
    ## checking errors in the inputs
    if (!is.vector(alpha)) 
        stop("'alpha' has to be a number.")
    if (length(alpha) > 1) 
        stop("'alpha' has to be a number.")
    if (alpha <= 0) 
        stop("'alpha' has to be between 0 and 1.")
    if (alpha >= 1) 
        stop("'alpha' has to be between 0 and 1.")
    if (!is.vector(M)) 
        stop("'M' has to be a number.")
    if (length(M) > 1) 
        stop("'M' has to be a number.")
    if (M < 1) 
        stop("'M' has to be a positive integer.")
    M = floor(M)
    if (!is.vector(nb_threshold)) 
        stop("'nb_threshold' has to be a number.")
    if (length(nb_threshold) > 1) 
        stop("'nb_threshold' has to be a number.")
    if (nb_threshold < 1) 
        stop("'nb_threshold' has to be a positive integer.")
    nb_threshold = floor(nb_threshold)
    if (!is.vector(tolerance_target)) 
        stop("'tolerance_target' has to be a number.")
    if (length(tolerance_target) > 1) 
        stop("'tolerance_target' has to be a number.")
    if (tolerance_target <= 0) 
        stop("'tolerance_target' has to be positive.")
    if (!is.vector(seed_count)) 
        stop("'seed_count' has to be a number.")
    if (length(seed_count) > 1) 
        stop("'seed_count' has to be a number.")
    if (seed_count < 0) 
        stop("'seed_count' has to be a positive number.")
    seed_count = floor(seed_count)
    start = Sys.time()
    if (progress_bar) {
        print("    ------ Delmoral et al. (2012)'s algorithm ------")
    }
    seed_count_ini = seed_count
    nparam = length(prior)
    nstat = length(summary_stat_target)
    # step 1 classic ABC step
    simul_below_tol = .ABC_rejection_M_cluster(model, prior, prior_test, nb_simul, 
        M, seed_count, n_cluster)
    seed_count = seed_count + M * nb_simul
    tab_weight = rep(1/nb_simul, nb_simul)
    ESS = nb_simul
    uu = (1:nb_simul) * M  # to compute sd_simul with only one simulation per parameter set
    sd_simul = sapply(as.data.frame(simul_below_tol[uu, (nparam + 1):(nparam + nstat)]), 
        sd)  # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
    l = dim(simul_below_tol)[2]
    if (M > 1) {
        particle_dist_mat = .compute_dist_M(M, summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
            (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
    } else {
        particle_dist_mat = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
            (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
    }
    dim(particle_dist_mat) <- c(nb_simul, M)
    new_tolerance = max(particle_dist_mat)
    tab_weight2 = .replicate_tab(tab_weight, M)
    intermediary_steps = list(NULL)
    if (verbose == TRUE) {
        write.table(cbind(tab_weight2, simul_below_tol), file = "output_step1", row.names = F, 
            col.names = F, quote = F)
        write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1", 
            row.names = F, col.names = F, quote = F)
        intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - seed_count_ini), 
            posterior = as.matrix(cbind(tab_weight2, simul_below_tol)))
    }
    if (progress_bar) {
        print("step 1 completed")
    }
    # following steps
    kstep = 1
    l = length(prior)
    cl <- makeCluster(getOption("cl.cores", n_cluster))
    while (new_tolerance > tolerance_target) {
        kstep = kstep + 1
        # determination of the new tolerance
        ESS_target = alpha * ESS
        tolerance_list = sort(as.numeric(names(table(particle_dist_mat))), decreasing = TRUE)
        i = 1
        test = FALSE
        while ((!test) && (i < length(tolerance_list))) {
            i = i + 1
            # computation of new ESS with the new tolerance value
            new_ESS = .compute_ESS(particle_dist_mat, tolerance_list[i])
            # check whether this value is below ESS_targ
            if (new_ESS < ESS_target) {
                new_tolerance = tolerance_list[(i - 1)]
                test = TRUE
            }
        }
        # if effective sample size is too small, resampling of particles
        ESS = .compute_ESS(particle_dist_mat, new_tolerance)
        tab_weight = .compute_weight_delmoral(particle_dist_mat, new_tolerance)
        tab_below = .compute_below(particle_dist_mat, new_tolerance)
        particles = matrix(0, (nb_simul * M), (nparam + nstat))
        if (ESS < nb_threshold) {
            # sample nb_simul particles
            for (i in 1:nb_simul) {
                particles[((1:M) + (i - 1) * M), ] = as.matrix(.particle_pick_delmoral(simul_below_tol, 
                  tab_weight, M))
            }
            simul_below_tol = matrix(0, nb_simul * M, (nparam + nstat))
            for (i1 in 1:(nb_simul * M)) {
                for (i2 in 1:(nparam + nstat)) {
                  simul_below_tol[i1, i2] = as.numeric(particles[i1, i2])
                }
            }
            particles = as.matrix(particles[uu, 1:nparam])
            if (M > 1) {
                particle_dist_mat = .compute_dist_M(M, summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                  (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
            } else {
                particle_dist_mat = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                  (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
            }
            dim(particle_dist_mat) <- c(nb_simul, M)
            tab_below = .compute_below(particle_dist_mat, new_tolerance)
            # reset their weight to 1/nb_simul
            tab_weight = rep(1/nb_simul, nb_simul)
            ESS = nb_simul
        } else {
            particles = as.matrix(simul_below_tol[, 1:nparam])
        }
        # MCMC move
        npar = floor(nb_simul * M/(100 * n_cluster))
        n_end = nb_simul * M - (npar * 100 * n_cluster)
        covmat = 2 * cov.wt(as.matrix(as.matrix(particles[uu, ])[tab_weight > 0, 
            ]), as.vector(tab_weight[tab_weight > 0]))$cov
        l_array = dim(particles)[2]
        if (is.null(l_array)) {
            l_array = 1
        }
        sd_array = array(1, l_array)
        for (j in 1:l_array) {
            sd_array[j] = sqrt(covmat[j, j])
        }
        simul_below_tol2 = simul_below_tol
        simul_below_tol = matrix(0, nb_simul * M, (nparam + nstat))
        param2 = array(0, (l + 1))
        tab_param = NULL
        tab_simul_summarystat = NULL
        if (npar > 0) {
            for (irun in 1:npar) {
                list_param = list(NULL)
                ic = 1
                for (irun2 in 1:(100 * n_cluster)) {
                  ii = (100 * n_cluster * (irun - 1) + irun2)%%M
                  ii2 = ceiling((100 * n_cluster * (irun - 1) + irun2)/M)
                  if (tab_weight[ii2] > 0) {
                    if ((ii == 1) || (M == 1)) {
                      param_moved = .move_particleb_uni(as.numeric(particles[(ii2 * 
                        M), ]), sd_array, prior, max_pick)
                      param = particles[(ii2 * M), ]
                      param = param_moved
                      param2 = c((seed_count + 1), param)
                      seed_count = seed_count + 1
                    } else {
                      param2[1] = param2[1] + 1
                      seed_count = seed_count + 1
                    }
                    list_param[[ic]] = param2
                    ic = ic + 1
                    tab_param = rbind(tab_param, param2[2:(l + 1)])
                  }
                }
                list_simul_summarystat = parLapplyLB(cl, list_param, model)
                ic = ic - 1
                for (ii in 1:ic) {
                  tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[ii]]))
                }
            }
        }
        if (n_end > 0) {
            list_param = list(NULL)
            ic = 1
            for (irun2 in 1:n_end) {
                ii = (100 * n_cluster * npar + irun2)%%M
                ii2 = ceiling((100 * n_cluster * npar + irun2)/M)
                if (tab_weight[ii2] > 0) {
                  if ((ii == 1) || (M == 1)) {
                    param_moved = .move_particleb_uni(as.numeric(particles[(ii2 * 
                      M), ]), sd_array, prior, max_pick)
                    param = particles[(ii2 * M), ]
                    param = param_moved
                    param2 = c((seed_count + 1), param)
                    seed_count = seed_count + 1
                  } else {
                    param2[1] = param2[1] + 1
                    seed_count = seed_count + 1
                  }
                  list_param[[ic]] = param2
                  ic = ic + 1
                  tab_param = rbind(tab_param, param2[2:(l + 1)])
                }
            }
            list_simul_summarystat = parLapplyLB(cl, list_param, model)
            ic = ic - 1
            for (ii in 1:ic) {
                tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[ii]]))
            }
        }
        tab_new_simul = cbind(tab_param, tab_simul_summarystat)
        tab_new_simul2 = matrix(0, dim(tab_new_simul)[1], dim(tab_new_simul)[2])
        for (i1 in 1:(dim(tab_new_simul)[1])) {
            for (i2 in 1:(nparam + nstat)) {
                tab_new_simul2[i1, i2] = as.numeric(tab_new_simul[i1, i2])
            }
        }
        iii = 0
        for (i in 1:nb_simul) {
            if (tab_weight[i] > 0) {
                iii = iii + 1
                n_acc = 1
                if (M > 1) {
                  new_dist = .compute_dist_M(M, summary_stat_target, tab_new_simul2[(((iii - 
                    1) * M + 1):(iii * M)), (nparam + 1):(nparam + nstat)], sd_simul, dist_weights=dist_weights)
                  n_acc = length(new_dist[new_dist < new_tolerance])
                } else {
                  new_dist = .compute_dist(summary_stat_target, rbind(tab_new_simul2[iii, 
                    (nparam + 1):(nparam + nstat)], tab_new_simul2[iii, (nparam + 
                    1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
                  if (new_dist[1] > new_tolerance) {
                    n_acc = 0
                  }
                }
                MH = min(1, (n_acc/tab_below[i]))
                uuu = runif(1)
                if (uuu <= MH) {
                  for (i1 in 1:M) {
                    for (i2 in 1:(nparam + nstat)) {
                      simul_below_tol[((i1) + (i - 1) * M), i2] = as.numeric(tab_new_simul2[((iii - 
                        1) * M + i1), i2])
                    }
                  }
                } else {
                  for (i1 in 1:M) {
                    for (i2 in 1:(nparam + nstat)) {
                      simul_below_tol[((i1) + (i - 1) * M), i2] = as.numeric(simul_below_tol2[((i1) + 
                        (i - 1) * M), i2])
                    }
                  }
                }
            } else {
                for (i1 in 1:M) {
                  for (i2 in 1:(nparam + nstat)) {
                    simul_below_tol[((i1) + (i - 1) * M), i2] = as.numeric(simul_below_tol2[((i1) + 
                      (i - 1) * M), i2])
                  }
                }
            }
        }
        if (M > 1) {
            particle_dist_mat = .compute_dist_M(M, summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
        } else {
            particle_dist_mat = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
        }
        dim(particle_dist_mat) <- c(nb_simul, M)
        tab_weight = .compute_weight_delmoral(particle_dist_mat, new_tolerance)
        tab_weight2 = .replicate_tab(tab_weight, M)
        if (verbose == TRUE) {
            write.table(as.numeric(new_tolerance), file = paste("tolerance_step", 
                kstep, sep = ""), row.names = F, col.names = F, quote = F)
            write.table(cbind(tab_weight2, simul_below_tol), file = paste("output_step", 
                kstep, sep = ""), row.names = F, col.names = F, quote = F)
            write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step", 
                kstep, sep = ""), row.names = F, col.names = F, quote = F)
            intermediary_steps[[kstep]] = list(n_simul_tot = as.numeric(seed_count - 
                seed_count_ini), tol_step = as.numeric(new_tolerance), posterior = as.matrix(cbind(tab_weight2, 
                simul_below_tol)))
        }
        if (progress_bar) {
            print(paste("step ", kstep, " completed - tol =", new_tolerance, sep = ""))
        }
    }
    stopCluster(cl)
    list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), stats = as.matrix(as.matrix(simul_below_tol)[, 
        (nparam + 1):(nparam + nstat)]), weights = tab_weight2/sum(tab_weight2), 
        stats_normalization = as.numeric(sd_simul), epsilon = max(.compute_dist(summary_stat_target, 
            as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + nstat)]), 
            sd_simul, dist_weights=dist_weights)), nsim = (seed_count - seed_count_ini), computime = as.numeric(difftime(Sys.time(), 
            start, units = "secs")))
    final_res = NULL
    if (verbose == TRUE) {
        final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), 
            stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + 
                nstat)]), weights = tab_weight2/sum(tab_weight2), stats_normalization = as.numeric(sd_simul), 
            epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count - 
                seed_count_ini), computime = as.numeric(difftime(Sys.time(), start, 
                units = "secs")), intermediary = intermediary_steps)
    } else {
        final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), 
            stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + 
                nstat)]), weights = tab_weight2/sum(tab_weight2), stats_normalization = as.numeric(sd_simul), 
            epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count - 
                seed_count_ini), computime = as.numeric(difftime(Sys.time(), start, 
                units = "secs")))
    }
    final_res
}

## function to sample in the prior distributions using a Latin Hypercube sample
.ABC_rejection_lhs_cluster <- function(model, prior, prior_test, nb_simul, seed_count, 
    n_cluster) {
    # library(lhs)
    cl <- makeCluster(getOption("cl.cores", n_cluster))
    tab_simul_summarystat = NULL
    tab_param = NULL
    list_param = list(NULL)
    npar = floor(nb_simul/(100 * n_cluster))
    n_end = nb_simul - (npar * 100 * n_cluster)
    nparam = length(prior)
    l = length(prior)
    random_tab = NULL
    all_unif_prior = .all_unif(prior)
    if (all_unif_prior) {
        random_tab = randomLHS(nb_simul, nparam)
    }
    if (npar > 0) {
        for (irun in 1:npar) {
            for (i in 1:(100 * n_cluster)) {
                param = array(0, l)
                if (!all_unif_prior) {
                  param = .sample_prior(prior, prior_test)
                } else {
                  for (j in 1:l) {
                    param[j] = as.numeric(prior[[j]]$sampleArgs[2]) + (as.numeric(prior[[j]]$sampleArgs[3]) - 
                      as.numeric(prior[[j]]$sampleArgs[2])) * random_tab[((irun - 
                      1) * 100 * n_cluster + i), j]
                  }
                }
                # if (use_seed) # NB: we force the value use_seed=TRUE
                param = c((seed_count + i), param)
                list_param[[i]] = param
                tab_param = rbind(tab_param, param[2:(l + 1)])
            }
            seed_count = seed_count + (n_cluster * 100)
            list_simul_summarystat = parLapplyLB(cl, list_param, model)
            for (i in 1:(100 * n_cluster)) {
                tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
            }
        }
    }
    if (n_end > 0) {
        # stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
        list_param = list(NULL)
        for (i in 1:n_end) {
            param = array(0, l)
            if (!all_unif_prior) {
                param = .sample_prior(prior, prior_test)
            } else {
                for (j in 1:l) {
                  param[j] = as.numeric(prior[[j]]$sampleArgs[2]) + (as.numeric(prior[[j]]$sampleArgs[3]) - 
                    as.numeric(prior[[j]]$sampleArgs[2])) * random_tab[(npar * 100 * 
                    n_cluster + i), j]
                }
            }
            # if (use_seed) # NB: we force the value use_seed=TRUE
            param = c((seed_count + i), param)
            list_param[[i]] = param
            tab_param = rbind(tab_param, param[2:(l + 1)])
        }
        seed_count = seed_count + n_end
        list_simul_summarystat = parLapplyLB(cl, list_param, model)
        for (i in 1:n_end) {
            tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
        }
        stopCluster(cl)
    } else {
        stopCluster(cl)
    }
    options(scipen = 0)
    cbind(tab_param, tab_simul_summarystat)
}
         
## function to perform ABC simulations from a non-uniform prior (derived from a
## set of particles)
.ABC_launcher_not_uniformc_cluster <- function(model, prior, param_previous_step, 
    tab_weight, nb_simul, seed_count, inside_prior, n_cluster, max_pick=10000) {
    tab_simul_summarystat = NULL
    tab_param = NULL
    k_acc = 0
    cl <- makeCluster(getOption("cl.cores", n_cluster))
    list_param = list(NULL)
    npar = floor(nb_simul/(100 * n_cluster))
    n_end = nb_simul - (npar * 100 * n_cluster)
    if (npar > 0) {
        for (irun in 1:npar) {
            for (i in 1:(100 * n_cluster)) {
                l = dim(param_previous_step)[2]
                counter = 0
                repeat {
                  counter = counter + 1
                  k_acc = k_acc + 1
                  # pick a particle
                  param_picked = .particle_pick(param_previous_step, tab_weight)
                  # move it
                  # only variable parameters are moved, computation of a WEIGHTED variance
                  param_moved = .move_particle(as.numeric(param_picked), 2*cov.wt(as.matrix(as.matrix(param_previous_step)),as.vector(tab_weight))$cov)
                  if ((!inside_prior) || (.is_included(param_moved, prior)) || (counter >= max_pick)) {
                    break
                  }
                }
                if (counter == max_pick) {
                  stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
                }
                param = param_previous_step[1, ]
                param = param_moved
                param = c((seed_count + i), param)
                list_param[[i]] = param
                tab_param = rbind(tab_param, param[2:(l + 1)])
            }
            seed_count = seed_count + n_cluster * 100
            list_simul_summarystat = parLapplyLB(cl, list_param, model)
            for (i in 1:(100 * n_cluster)) {
                tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
            }
        }
    }
    if (n_end > 0) {
        # stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
        list_param = list(NULL)
        for (i in 1:n_end) {
            l = dim(param_previous_step)[2]
            counter = 0
            repeat {
                k_acc = k_acc + 1
                counter = counter + 1
                # pick a particle
                param_picked = .particle_pick(param_previous_step, tab_weight)
                # move it
                param_moved = .move_particle(as.numeric(param_picked), 2 * cov.wt(as.matrix(as.matrix(param_previous_step)), 
                    as.vector(tab_weight))$cov)  # only variable parameters are moved, computation of a WEIGHTED variance
                if ((!inside_prior) || (.is_included(param_moved, prior)) || (counter >= max_pick)) {
                    break
                }
            }
            if (counter == max_pick) {
                stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
            }
            param = param_previous_step[1, ]
            param = param_moved
            param = c((seed_count + i), param)
            list_param[[i]] = param
            tab_param = rbind(tab_param, param[2:(l + 1)])
        }
        seed_count = seed_count + n_end
        list_simul_summarystat = parLapplyLB(cl, list_param, model)
        for (i in 1:n_end) {
            tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
        }
    }
    stopCluster(cl)
    list(cbind(tab_param, tab_simul_summarystat), nb_simul/k_acc)
}

## function to perform ABC simulations from a non-uniform prior and with
## unidimensional jumps
.ABC_launcher_not_uniformc_uni_cluster <- function(model, prior, param_previous_step, 
    tab_weight, nb_simul, seed_count, inside_prior, n_cluster, max_pick=10000) {
    tab_simul_summarystat = NULL
    tab_param = NULL
    k_acc = 0
    cl <- makeCluster(getOption("cl.cores", n_cluster))
    list_param = list(NULL)
    npar = floor(nb_simul/(100 * n_cluster))
    n_end = nb_simul - (npar * 100 * n_cluster)
    l = dim(param_previous_step)[2]
    l_array = dim(param_previous_step)[2]
    if (is.null(l_array)) {
        l_array = 1
    }
    sd_array = array(1, l_array)
    covmat = 2 * cov.wt(as.matrix(as.matrix(param_previous_step)), as.vector(tab_weight))$cov  # computation of a WEIGHTED variance
    for (j in 1:l_array) {
        sd_array[j] = sqrt(covmat[j, j])
    }
    if (npar > 0) {
        for (irun in 1:npar) {
            for (i in 1:(100 * n_cluster)) {
                if (!inside_prior) {
                  k_acc = k_acc + 1
                  # pick a particle
                  param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)), 
                    tab_weight)
                  # move it
                  param_moved = .move_particle_uni(as.numeric(param_picked), sd_array)  # only variable parameters are moved
                } else {
                  test = FALSE
                  counter = 0
                  while ((!test) && (counter < max_pick)) {
                    k_acc = k_acc + 1
                    counter = counter + 1
                    # pick a particle
                    param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)), 
                      tab_weight)
                    # move it
                    param_moved = .move_particle_uni(as.numeric(param_picked), sd_array)  # only variable parameters are moved
                    test = .is_included(param_moved, prior)
                  }
                  if (counter == max_pick) {
                    stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
                  }
                }
                param = param_previous_step[1, ]
                param = param_moved
                param = c((seed_count + i), param)
                list_param[[i]] = param
                tab_param = rbind(tab_param, param[2:(l + 1)])
            }
            seed_count = seed_count + 100 * n_cluster
            list_simul_summarystat = parLapplyLB(cl, list_param, model)
            for (i in 1:(100 * n_cluster)) {
                tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
            }
        }
    }
    if (n_end > 0) {
        # stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
        list_param = list(NULL)
        for (i in 1:n_end) {
            if (!inside_prior) {
                k_acc = k_acc + 1
                # pick a particle
                param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)), 
                  tab_weight)
                # move it
                param_moved = .move_particle_uni(as.numeric(param_picked), sd_array)  # only variable parameters are moved
            } else {
                test = FALSE
                counter = 0
                while ((!test) && (counter < max_pick)) {
                  counter = counter + 1
                  k_acc = k_acc + 1
                  # pick a particle
                  param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)), 
                    tab_weight)
                  # move it
                  param_moved = .move_particle_uni(as.numeric(param_picked), sd_array)  # only variable parameters are moved
                  test = .is_included(param_moved, prior)
                }
                if (counter == max_pick) {
                  stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
                }
            }
            param = param_previous_step[1, ]
            param = param_moved
            param = c((seed_count + i), param)
            list_param[[i]] = param
            tab_param = rbind(tab_param, param[2:(l + 1)])
        }
        seed_count = seed_count + n_end
        list_simul_summarystat = parLapplyLB(cl, list_param, model)
        for (i in 1:n_end) {
            tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
        }
        stopCluster(cl)
    } else {
        stopCluster(cl)
    }
    list(cbind(tab_param, tab_simul_summarystat), nb_simul/k_acc)
}

## sequential algorithm of Lenormand et al. 2012
.ABC_Lenormand_cluster <- function(model, prior, prior_test, nb_simul, summary_stat_target, 
    n_cluster, verbose, alpha = 0.5, p_acc_min = 0.05, dist_weights=NULL, seed_count = 0, inside_prior = TRUE, 
    progress_bar = FALSE, max_pick=10000) {
    ## checking errors in the inputs
    if (!is.vector(alpha)) 
        stop("'alpha' has to be a number.")
    if (length(alpha) > 1) 
        stop("'alpha' has to be a number.")
    if (alpha <= 0) 
        stop("'alpha' has to be between 0 and 1.")
    if (alpha >= 1) 
        stop("'alpha' has to be between 0 and 1.")
    if (!is.vector(p_acc_min)) 
        stop("'p_acc_min' has to be a number.")
    if (length(p_acc_min) > 1) 
        stop("'p_acc_min' has to be a number.")
    if (p_acc_min <= 0) 
        stop("'p_acc_min' has to be between 0 and 1.")
    if (p_acc_min >= 1) 
        stop("'p_acc_min' has to be between 0 and 1.")
    if (!is.vector(seed_count)) 
        stop("'seed_count' has to be a number.")
    if (length(seed_count) > 1) 
        stop("'seed_count' has to be a number.")
    if (seed_count < 0) 
        stop("'seed_count' has to be a positive number.")
    seed_count = floor(seed_count)
    if (!is.logical(inside_prior)) 
        stop("'inside_prior' has to be boolean.")
    start = Sys.time()
    if (progress_bar) {
        print("    ------ Lenormand et al. (2012)'s algorithm ------")
    }
    seed_count_ini = seed_count
    nparam = length(prior)
    nstat = length(summary_stat_target)
    if (!.all_unif(prior)) {
        stop("Prior distributions must be uniform to use the Lenormand et al. (2012)'s algorithm.")
    }
    n_alpha = ceiling(nb_simul * alpha)
    ## step 1 ABC rejection step with LHS
    tab_ini = .ABC_rejection_lhs_cluster(model, prior, prior_test, nb_simul, seed_count, 
        n_cluster)
    # initially, weights are equal
    tab_weight = array(1, n_alpha)
    if (verbose == TRUE) {
        write.table(as.matrix(cbind(tab_weight, tab_ini)), file = "model_step1", 
            row.names = F, col.names = F, quote = F)
    }
    seed_count = seed_count + nb_simul
    # determination of the normalization constants in each dimension associated to
    # each summary statistic, this normalization will not change during all the
    # algorithm
    sd_simul = sapply(as.data.frame(tab_ini[, (nparam + 1):(nparam + nstat)]), sd, 
        na.rm = TRUE)
    # selection of the alpha quantile closest simulations
    simul_below_tol = NULL
    simul_below_tol = rbind(simul_below_tol, .selec_simul_alpha(summary_stat_target, 
        tab_ini[, 1:nparam], tab_ini[, (nparam + 1):(nparam + nstat)], sd_simul, 
        alpha, dist_weights=dist_weights))
    simul_below_tol = simul_below_tol[1:n_alpha, ]  # to be sure that there are not two or more simulations at a distance equal to the tolerance determined by the quantile
    tab_dist = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
        (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
    tol_next = max(tab_dist)
    intermediary_steps = list(NULL)
    if (verbose == TRUE) {
        write.table(cbind(tab_weight, simul_below_tol), file = "output_step1", row.names = F, 
            col.names = F, quote = F)
        write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1", 
            row.names = F, col.names = F, quote = F)
        write.table(as.numeric(tol_next), file = "tolerance_step1", row.names = F, 
            col.names = F, quote = F)
        intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - seed_count_ini), 
            tol_step = as.numeric(tol_next), posterior = as.matrix(cbind(tab_weight, 
                simul_below_tol)))
    }
    if (progress_bar) {
        print("step 1 completed")
    }
    ## following steps
    p_acc = p_acc_min + 1
    nb_simul_step = nb_simul - n_alpha
    it = 1
    while (p_acc > p_acc_min) {
        it = it + 1
        simul_below_tol2 = NULL
        tab_inic = .ABC_launcher_not_uniformc_cluster(model, prior, as.matrix(as.matrix(simul_below_tol)[, 
            1:nparam]), tab_weight/sum(tab_weight), nb_simul_step, seed_count, inside_prior, 
            n_cluster, max_pick)
        tab_ini = as.matrix(tab_inic[[1]])
        tab_ini = as.numeric(tab_ini)
        dim(tab_ini) = c(nb_simul_step, (nparam + nstat))
        seed_count = seed_count + nb_simul_step
        if (!inside_prior) {
            tab_weight2 = .compute_weightb(as.matrix(as.matrix(as.matrix(tab_ini)[, 
                1:nparam])), as.matrix(as.matrix(as.matrix(simul_below_tol)[, 1:nparam])), 
                tab_weight/sum(tab_weight), prior)
        } else {
            tab_weight2 = tab_inic[[2]] * (.compute_weightb(as.matrix(as.matrix(as.matrix(tab_ini)[, 
                1:nparam])), as.matrix(as.matrix(as.matrix(simul_below_tol)[, 1:nparam])), 
                tab_weight/sum(tab_weight), prior))
        }
        if (verbose == TRUE) {
            write.table(as.matrix(cbind(tab_weight2, tab_ini)), file = paste("model_step", 
                it, sep = ""), row.names = F, col.names = F, quote = F)
        }
        simul_below_tol2 = rbind(as.matrix(simul_below_tol), as.matrix(tab_ini))
        tab_weight = c(tab_weight, tab_weight2)
        tab_dist2 = .compute_dist(summary_stat_target, as.matrix(as.matrix(tab_ini)[, 
            (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
        p_acc = length(tab_dist2[!is.na(tab_dist2) & tab_dist2 <= tol_next])/nb_simul_step
        tab_dist = c(tab_dist, tab_dist2)
        tol_next = sort(tab_dist)[n_alpha]
        simul_below_tol2 = simul_below_tol2[!is.na(tab_dist) & tab_dist <= tol_next, 
            ]
        tab_weight = tab_weight[!is.na(tab_dist) & tab_dist <= tol_next]
        tab_weight = tab_weight[1:n_alpha]
        tab_dist = tab_dist[!is.na(tab_dist) & tab_dist <= tol_next]
        odist = order(tab_dist, decreasing = FALSE)[1:n_alpha]
        tab_dist_new = tab_dist
        simul_below_tol = matrix(0, n_alpha, (nparam + nstat))
        for (i1 in 1:n_alpha) {
            tab_dist_new[i1] = tab_dist[odist[i1]]
            for (i2 in 1:(nparam + nstat)) {
                simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[odist[i1], 
                  i2])
            }
        }
        tab_dist = tab_dist_new[1:n_alpha]
        if (verbose == TRUE) {
            write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = paste("output_step", 
                it, sep = ""), row.names = F, col.names = F, quote = F)
            write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step", 
                it, sep = ""), row.names = F, col.names = F, quote = F)
            write.table(as.numeric(p_acc), file = paste("p_acc_step", it, sep = ""), 
                row.names = F, col.names = F, quote = F)
            write.table(as.numeric(tol_next), file = paste("tolerance_step", it, 
                sep = ""), row.names = F, col.names = F, quote = F)
            intermediary_steps[[it]] = list(n_simul_tot = as.numeric(seed_count - 
                seed_count_ini), tol_step = as.numeric(tol_next), p_acc = as.numeric(p_acc), 
                posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
        }
        if (progress_bar) {
            print(paste("step ", it, " completed - p_acc = ", p_acc, sep = ""))
        }
    }
    final_res = NULL
    if (verbose == TRUE) {
        final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), 
            stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + 
                nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul), 
            epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
                seed_count_ini), computime = as.numeric(difftime(Sys.time(), start, 
                units = "secs")), intermediary = intermediary_steps)
    } else {
        final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), 
            stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + 
                nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul), 
            epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[, 
                (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count - 
                seed_count_ini), computime = as.numeric(difftime(Sys.time(), start, 
                units = "secs")))
    }
    final_res
}

## general function regrouping the different sequential algorithms [Beaumont et
## al., 2009] Beaumont, M. A., Cornuet, J., Marin, J., and Robert, C. P.  (2009).
## Adaptive approximate Bayesian computation.  Biometrika,96(4):983-990.
## [Drovandi & Pettitt 2011] Drovandi, C. C. and Pettitt, A. N. (2011).
## Estimation of parameters for macroparasite population evolution using
## approximate Bayesian computation. Biometrics, 67(1):225-233.  [Del Moral et al.
## 2012] Del Moral, P., Doucet, A., and Jasra, A. (2012). An adaptive sequential
## Monte Carlo method for approximate Bayesian computation, Statistics and
## Computing., 22(5):1009-1020.  [Lenormand et al. 2012] Lenormand, M., Jabot, F.,
## Deffuant G. (2012). Adaptive approximate Bayesian computation for complex
## models, submitted to Comput. Stat. )
.ABC_sequential_cluster <- function(method, model, prior, prior_test, nb_simul, summary_stat_target, 
    n_cluster, use_seed, verbose, dist_weights=NULL, ...) {
    if (use_seed == FALSE) {
        stop("For parallel implementations, you must specify the option 'use_seed=TRUE' and modify your model accordingly - see the package's vignette for more details.")
    }
    options(scipen = 50)
    return(switch(EXPR = method, Beaumont = .ABC_PMC_cluster(model, prior, prior_test, 
        nb_simul, summary_stat_target, n_cluster, verbose, dist_weights=dist_weights , ...), Drovandi = .ABC_Drovandi_cluster(model, 
        prior, nb_simul, summary_stat_target, n_cluster, verbose, dist_weights=dist_weights, ...), Delmoral = .ABC_Delmoral_cluster(model, 
        prior, prior_test, nb_simul, summary_stat_target, n_cluster, verbose, dist_weights=dist_weights, ...), 
        Lenormand = .ABC_Lenormand_cluster(model, prior, prior_test, nb_simul, summary_stat_target, 
            n_cluster, verbose, dist_weights=dist_weights, ...)))
    options(scipen = 0)
}

## ABC-MCMC algorithm of Marjoram et al. 2003 with automatic determination of the
## tolerance and proposal range following Wegmann et al. 2009
.ABC_MCMC2_cluster <- function(model, prior, prior_test, n_obs, n_between_sampling, 
    summary_stat_target, n_cluster, verbose, n_calibration = 10000, tolerance_quantile = 0.01, 
    proposal_phi = 1, dist_weights=NULL, seed_count = 0, max_pick=100000) {
    ## checking errors in the inputs
    if (!is.vector(n_calibration)) 
        stop("'n_calibration' has to be a number.")
    if (length(n_calibration) > 1) 
        stop("'n_calibration' has to be a number.")
    if (n_calibration < 1) 
        stop("'n_calibration' has to be positive.")
    n_calibration = floor(n_calibration)
    if (!is.vector(tolerance_quantile)) 
        stop("'tolerance_quantile' has to be a number.")
    if (length(tolerance_quantile) > 1) 
        stop("'tolerance_quantile' has to be a number.")
    if (tolerance_quantile <= 0) 
        stop("'tolerance_quantile' has to be between 0 and 1.")
    if (tolerance_quantile >= 1) 
        stop("'tolerance_quantile' has to be between 0 and 1.")
    if (!is.vector(proposal_phi)) 
        stop("'proposal_phi' has to be a number.")
    if (length(proposal_phi) > 1) 
        stop("'proposal_phi' has to be a number.")
    if (proposal_phi <= 0) 
        stop("'proposal_phi' has to be positive.")
    if (!is.vector(seed_count)) 
        stop("'seed_count' has to be a number.")
    if (length(seed_count) > 1) 
        stop("'seed_count' has to be a number.")
    if (seed_count < 0) 
        stop("'seed_count' has to be a positive number.")
    seed_count = floor(seed_count)
    start = Sys.time()
    if (verbose) {
        print("    ------ Marjoram et al. (2003)'s algorithm with modifications drawn from Wegmann et al. (2009) related to automatization ------")
    }
    seed_count_ini = seed_count
    nparam = length(prior)
    nstat = length(summary_stat_target)
    tab_simul_summary_stat = NULL
    tab_param = NULL
    # initial draw of a particle
    initial = .ABC_rejection_internal_cluster(model, prior, prior_test, n_calibration, 
        seed_count, n_cluster)
    seed_count = seed_count + n_calibration
    tab_param = as.matrix(as.matrix(initial)[, 1:nparam])
    tab_simul_summary_stat = as.matrix(initial[, (nparam + 1):(nparam + nstat)])
    sd_simul = array(0, nstat)
    for (i in 1:nstat) {
        sd_simul[i] = sd(tab_simul_summary_stat[, i])
    }
    simuldist = .compute_dist(summary_stat_target, tab_simul_summary_stat, sd_simul, dist_weights=dist_weights)
    ord_sim = order(simuldist, decreasing = F)
    nmax = ceiling(tolerance_quantile * n_calibration)
    dist_max = simuldist[(ord_sim[nmax])]
    tab_param = as.matrix(tab_param)[(ord_sim[1:nmax]), ]
    proposal_range = vector(mode = "numeric", length = nparam)
    for (i in 1:nparam) {
        proposal_range[i] = sd(as.matrix(tab_param)[, i]) * proposal_phi/2
    }
    n_ini = sample(nmax, 1)
    tab_simul_ini = as.numeric(tab_simul_summary_stat[(ord_sim[n_ini]), ])
    dist_ini = simuldist[(ord_sim[n_ini])]
    param_ini = as.matrix(tab_param)[n_ini, ]
    if (verbose == TRUE) {
        write.table((seed_count - seed_count_ini), file = "n_simul_tot_step1", row.names = F, 
            col.names = F, quote = F)
        write.table(NULL, file = "output_mcmc", row.names = F, col.names = F, quote = F)
        print("initial calibration performed ")
    }
    # chain run
    tab_param = param_ini
    tab_simul_summary_stat = tab_simul_ini
    tab_dist = as.numeric(dist_ini)
    if (verbose == TRUE) {
        intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
        write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
    }
    for (is in 2:n_obs) {
        for (i in 1:n_between_sampling) {
            param = .move_particle_uni_uniform(as.numeric(param_ini), proposal_range, 
                prior, max_pick)
            param = c((seed_count + i), param)
            simul_summary_stat = model(param)
            param = param[2:(nparam + 1)]
            dist_simul = .compute_dist(summary_stat_target, as.numeric(simul_summary_stat), 
                sd_simul, dist_weights=dist_weights)
            if (dist_simul < dist_max) {
                param_ini = param
                tab_simul_ini = as.numeric(simul_summary_stat)
                dist_ini = dist_simul
            }
        }
        seed_count = seed_count + n_between_sampling
        tab_simul_summary_stat = rbind(tab_simul_summary_stat, tab_simul_ini)
        tab_param = rbind(tab_param, as.numeric(param_ini))
        tab_dist = rbind(tab_dist, as.numeric(dist_ini))
        if (verbose == TRUE) {
            intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
            write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
            if (is%%100 == 0) {
                print(paste(is, " ", sep = ""))
            }
        }
    }
    tab_param2 = matrix(0, dim(tab_param)[1], dim(tab_param)[2])
    for (i in 1:dim(tab_param)[1]) {
        for (j in 1:dim(tab_param)[2]) {
            tab_param2[i, j] = tab_param[i, j]
        }
    }
    tab_simul_summary_stat2 = matrix(0, dim(tab_simul_summary_stat)[1], dim(tab_simul_summary_stat)[2])
    for (i in 1:dim(tab_simul_summary_stat)[1]) {
        for (j in 1:dim(tab_simul_summary_stat)[2]) {
            tab_simul_summary_stat2[i, j] = tab_simul_summary_stat[i, j]
        }
    }
    tab_dist2 = array(0, length(tab_dist))
    for (i in 1:length(tab_dist)) {
        tab_dist2[i] = tab_dist[i]
    }
    list(param = as.matrix(tab_param2), stats = as.matrix(tab_simul_summary_stat2), 
        dist = tab_dist2, stats_normalization = as.numeric(sd_simul), epsilon = max(tab_dist), 
        nsim = (seed_count - seed_count_ini), n_between_sampling = n_between_sampling, 
        computime = as.numeric(difftime(Sys.time(), start, units = "secs")))
}

## ABC-MCMC algorithm of Wegmann et al. 2009 - the PLS step is drawn from the
## manual of ABCtoolbox (figure 9) - NB: for consistency with ABCtoolbox, AM11-12
## are not implemented in the algorithm
.ABC_MCMC3_cluster <- function(model, prior, prior_test, n_obs, n_between_sampling, 
    summary_stat_target, n_cluster, verbose, n_calibration = 10000, tolerance_quantile = 0.01, 
    proposal_phi = 1, numcomp = 0, dist_weights=NULL, seed_count = 0, max_pick=100000) {
    ## checking errors in the inputs
    if (!is.vector(n_calibration)) 
        stop("'n_calibration' has to be a number.")
    if (length(n_calibration) > 1) 
        stop("'n_calibration' has to be a number.")
    if (n_calibration < 1) 
        stop("'n_calibration' has to be positive.")
    n_calibration = floor(n_calibration)
    if (!is.vector(tolerance_quantile)) 
        stop("'tolerance_quantile' has to be a number.")
    if (length(tolerance_quantile) > 1) 
        stop("'tolerance_quantile' has to be a number.")
    if (tolerance_quantile <= 0) 
        stop("'tolerance_quantile' has to be between 0 and 1.")
    if (tolerance_quantile >= 1) 
        stop("'tolerance_quantile' has to be between 0 and 1.")
    if (!is.vector(proposal_phi)) 
        stop("'proposal_phi' has to be a number.")
    if (length(proposal_phi) > 1) 
        stop("'proposal_phi' has to be a number.")
    if (proposal_phi <= 0) 
        stop("'proposal_phi' has to be positive.")
    if (!is.vector(numcomp)) 
        stop("'numcomp' has to be a number.")
    if (length(numcomp) > 1) 
        stop("'numcomp' has to be a number.")
    if (numcomp < 0) 
        stop("'numcomp' has to be positive.")
    if (numcomp > length(summary_stat_target)) 
        stop("'numcomp' has to smaller or equal to the number of summary statistics.")
    numcomp = floor(numcomp)
    if (!is.vector(seed_count)) 
        stop("'seed_count' has to be a number.")
    if (length(seed_count) > 1) 
        stop("'seed_count' has to be a number.")
    if (seed_count < 0) 
        stop("'seed_count' has to be a positive number.")
    seed_count = floor(seed_count)
    start = Sys.time()
    if (verbose) {
        print("    ------ Wegmann et al. (2009)'s algorithm ------")
    }
    # library(pls) library(MASS) AM1
    seed_count_ini = seed_count
    nparam = length(prior)
    nstat = length(summary_stat_target)
    if (nstat <= 1) {
        stop("A single summary statistic is used, use the method 'Marjoram' instead")
    }
    if (numcomp == 0) {
        numcomp = nstat
    }
    tab_simul_summary_stat = NULL
    tab_param = NULL
    if (length(prior) <= 1) {
        stop("A single parameter is varying, use the method 'Marjoram' instead")
    }
    # initial draw of a particle
    initial = .ABC_rejection_internal_cluster(model, prior, prior_test, nb_simul = n_calibration, 
        seed_count, n_cluster)
    seed_count = seed_count + n_calibration
    tab_param = as.matrix(as.matrix(initial)[, 1:nparam])
    tab_simul_summary_stat = as.matrix(initial[, (nparam + 1):(nparam + nstat)])
    if (verbose == TRUE) {
        write.table((seed_count - seed_count_ini), file = "n_simul_tot_step1", row.names = F, 
            col.names = F, quote = F)
        write.table(NULL, file = "output_mcmc", row.names = F, col.names = F, quote = F)
    }
    ## AM2: PLS step print('AM2 ') standardize the params
    sparam = as.matrix(tab_param)
    ls = dim(sparam)[2]
    for (i in 1:ls) {
        sparam[, i] = (sparam[, i] - mean(sparam[, i]))/sd(sparam[, i])
    }
    # force stat in [1,2]
    myMax <- c()
    myMin <- c()
    lambda <- c()
    myGM <- c()
    stat = tab_simul_summary_stat
    # print('stat 1 ') print(stat)
    summary_stat_targ = summary_stat_target
    for (i in 1:nstat) {
        myMax <- c(myMax, max(stat[, i]))
        myMin <- c(myMin, min(stat[, i]))
        stat[, i] = 1 + (stat[, i] - myMin[i])/(myMax[i] - myMin[i])
        summary_stat_targ[i] = 1 + (summary_stat_targ[i] - myMin[i])/(myMax[i] - 
            myMin[i])
    }
    # print('stat 2 ') print(stat) transform statistics via boxcox
    dmat = matrix(0, n_calibration, (ls + 1))
    for (i in 1:nstat) {
        d = cbind(as.vector(as.numeric(stat[, i])), as.matrix(sparam))
        for (i1 in 1:n_calibration) {
            for (i2 in 1:(ls + 1)) {
                dmat[i1, i2] = as.numeric(d[i1, i2])
            }
        }
        save(dmat, file = "dmat.RData")
        load("dmat.RData", .GlobalEnv)
        file.remove("dmat.RData")
        mylm <- lm(as.formula(as.data.frame(dmat)), data = as.data.frame(dmat))
        # mylm<-lm(as.formula(as.data.frame(dmat))) mylm<-lm(stat[,i]~as.matrix(sparam))
        myboxcox <- boxcox(mylm, lambda = seq(-20, 100, 1/10), interp = T, eps = 1/50, 
            plotit = FALSE)
        lambda <- c(lambda, myboxcox$x[myboxcox$y == max(myboxcox$y)])
        myGM <- c(myGM, exp(mean(log(stat[, i]))))
    }
    # standardize the BC-stat
    myBCMeans <- c()
    myBCSDs <- c()
    for (i in 1:nstat) {
        stat[, i] <- ((stat[, i]^lambda[i]) - 1)/(lambda[i] * (myGM[i]^(lambda[i] - 
            1)))
        summary_stat_targ[i] <- ((summary_stat_targ[i]^lambda[i]) - 1)/(lambda[i] * 
            (myGM[i]^(lambda[i] - 1)))
        myBCSDs <- c(myBCSDs, sd(stat[, i]))
        myBCMeans <- c(myBCMeans, mean(stat[, i]))
        stat[, i] <- (stat[, i] - myBCMeans[i])/myBCSDs[i]
        summary_stat_targ[i] <- (summary_stat_targ[i] - myBCMeans[i])/myBCSDs[i]
    }
    # perform pls
    myPlsr <- plsr(as.matrix(sparam) ~ as.matrix(stat), scale = F, ncomp = numcomp, 
        validation = "LOO")
    pls_transformation = matrix(0, numcomp, nstat)
    for (i in 1:numcomp) {
        pls_transformation[i, ] = as.numeric(myPlsr$loadings[, i])
    }
    ## AM3 print('AM3 ')
    summary_stat_targ = t(pls_transformation %*% as.vector(summary_stat_targ))
    stat_pls = t(pls_transformation %*% t(stat))
    simuldist = .compute_dist(summary_stat_targ, stat_pls, rep(1, numcomp), dist_weights=dist_weights)
    ## AM4 print('AM4 ')
    ord_sim = order(simuldist, decreasing = F)
    nmax = ceiling(tolerance_quantile * n_calibration)
    dist_max = simuldist[(ord_sim[nmax])]
    tab_param = as.matrix(tab_param)[(ord_sim[1:nmax]), ]
    proposal_range = vector(mode = "numeric", length = nparam)
    for (i in 1:nparam) {
        proposal_range[i] = sd(tab_param[, i]) * proposal_phi/2
    }
    if (verbose) {
        print("initial calibration performed ")
    }
    ## AM5: chain run print('AM5 ')
    n_ini = sample(nmax, 1)
    tab_simul_ini = as.numeric(tab_simul_summary_stat[(ord_sim[n_ini]), ])
    param_ini = tab_param[n_ini, ]
    tab_param = param_ini
    tab_simul_summary_stat = tab_simul_ini
    dist_ini = simuldist[(ord_sim[n_ini])]
    tab_dist = as.numeric(dist_ini)
    if (verbose == TRUE) {
        intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
        write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
    }
    for (is in 2:n_obs) {
        for (i in 1:n_between_sampling) {
            ## AM6 print('AM6 ')
            param = .move_particle_uni_uniform(as.numeric(param_ini), proposal_range, 
                prior, max_pick)
            param = c((seed_count + i), param)
            ## AM7 print('AM7 ')
            simul_summary_stat = model(param)
            param = param[2:(nparam + 1)]
            simul_summary_stat_output = simul_summary_stat
            for (ii in 1:nstat) {
                simul_summary_stat[ii] = 1 + (simul_summary_stat[ii] - myMin[ii])/(myMax[ii] - 
                  myMin[ii])
            }
            for (ii in 1:nstat) {
                simul_summary_stat[ii] <- ((simul_summary_stat[ii]^lambda[ii]) - 
                  1)/(lambda[ii] * (myGM[ii]^(lambda[ii] - 1)))
                simul_summary_stat[ii] <- (simul_summary_stat[ii] - myBCMeans[ii])/myBCSDs[ii]
            }
            simul_summary_stat = as.matrix(simul_summary_stat)
            dim(simul_summary_stat) <- c(nstat, 1)
            simul_summary_stat = t(pls_transformation %*% simul_summary_stat)
            dist_simul = .compute_dist(summary_stat_targ, as.numeric(simul_summary_stat), 
                rep(1, numcomp), dist_weights=dist_weights)
            ## AM8-9 print('AM8-9 ')
            if (dist_simul < dist_max) {
                param_ini = param
                tab_simul_ini = as.numeric(simul_summary_stat_output)
                dist_ini = dist_simul
            }
        }
        seed_count = seed_count + n_between_sampling
        tab_simul_summary_stat = rbind(tab_simul_summary_stat, tab_simul_ini)
        tab_param = rbind(tab_param, as.numeric(param_ini))
        tab_dist = rbind(tab_dist, as.numeric(dist_ini))
        if (verbose == TRUE) {
            intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
            write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
            if (is%%100 == 0) {
                print(paste(is, " ", sep = ""))
            }
        }
    }
    tab_param2 = matrix(0, dim(tab_param)[1], dim(tab_param)[2])
    for (i in 1:dim(tab_param)[1]) {
        for (j in 1:dim(tab_param)[2]) {
            tab_param2[i, j] = tab_param[i, j]
        }
    }
    tab_simul_summary_stat2 = matrix(0, dim(tab_simul_summary_stat)[1], dim(tab_simul_summary_stat)[2])
    for (i in 1:dim(tab_simul_summary_stat)[1]) {
        for (j in 1:dim(tab_simul_summary_stat)[2]) {
            tab_simul_summary_stat2[i, j] = tab_simul_summary_stat[i, j]
        }
    }
    tab_dist2 = array(0, length(tab_dist))
    for (i in 1:length(tab_dist)) {
        tab_dist2[i] = tab_dist[i]
    }
    list(param = as.matrix(tab_param2), stats = as.matrix(tab_simul_summary_stat2), 
        dist = tab_dist2, epsilon = max(tab_dist), nsim = (seed_count - seed_count_ini), 
        n_between_sampling = n_between_sampling, min_stats = myMin, max_stats = myMax, 
        lambda = lambda, geometric_mean = myGM, boxcox_mean = myBCMeans, boxcox_sd = myBCSDs, 
        pls_transform = pls_transformation, n_component = numcomp, computime = as.numeric(difftime(Sys.time(), 
            start, units = "secs")))
}

## FUNCTION ABC_mcmc: ABC coupled to MCMC (Marjoram et al. 2003, Wegmann et al.
## 2009)
.ABC_mcmc_cluster <- function(method, model, prior, prior_test, n_obs, n_between_sampling, 
    summary_stat_target, n_cluster = 1, use_seed, verbose, dist_weights=NULL, ...) {
    if (use_seed == FALSE) {
        stop("For parallel implementations, you must specify the option 'use_seed=TRUE' and modify your model accordingly - see the package's vignette for more details.")
    }
    options(scipen = 50)
    # library(parallel) Note that we do not consider the original Marjoram's
    # algortithm, which is not prone to parallel computing. (no calibration step)
    return(switch(EXPR = method, Marjoram = .ABC_MCMC2_cluster(model, prior, prior_test, 
        n_obs, n_between_sampling, summary_stat_target, n_cluster, verbose, dist_weights=dist_weights, ...), 
        Wegmann = .ABC_MCMC3_cluster(model, prior, prior_test, n_obs, n_between_sampling, 
            summary_stat_target, n_cluster, verbose, dist_weights=dist_weights, ...)))
    options(scipen = 0)
}

######################### Utilities functions Progress Bar
.progressBar <- function(min = 0, max = 1, initial = 0, text = "", char = "=", width = NA, 
    title, label, style = 1, file = "") {
    if (!identical(file, "") && !(inherits(file, "connection") && isOpen(file))) 
        stop("\"file\" must be \"\" or an open connection object")
    if (!style %in% 1L:3L) 
        style <- 1
    .val <- initial
    .killed <- FALSE
    .nb <- 0L
    .pc <- -1L
    nw <- nchar(char, "w")
    if (is.na(width)) {
        width <- getOption("width")
        if (style == 3L) 
            width <- width - 10L
        width <- trunc(width/nw)
    }
    if (max <= min) 
        stop("must have max > min")
    up <- function(value, text) {
        if (!is.finite(value) || value < min || value > max) 
            return()
        .val <<- value
        nb <- round(width * (value - min)/(max - min))
        pc <- round(100 * (value - min)/(max - min))
        if (nb == .nb && pc == .pc) 
            return()
        cat(paste(c("\r  |", rep.int(" ", nw * width + 6)), collapse = ""), file = file)
        cat(paste(c("\r  |", rep.int(char, nb), rep.int(" ", nw * (width - nb)), 
            sprintf("| %3d%% %s", pc, text)), collapse = ""), file = file)
        flush.console()
        .nb <<- nb
        .pc <<- pc
    }
    getVal <- function() .val
    kill <- function() if (!.killed) {
        cat("\n", file = file)
        flush.console()
        .killed <<- TRUE
    }
    up(initial, text)
    structure(list(getVal = getVal, up = up, kill = kill), class = "txtProgressBar")
}

.updateProgressBar <- function(pb, value, text = "") {
    if (!inherits(pb, "txtProgressBar")) 
        stop("'pb' is not from class 'txtProgressBar'")
    oldval <- pb$getVal()
    pb$up(value, text)
    invisible(oldval)
} 

Try the EasyABC package in your browser

Any scripts or data that you put into this service are public.

EasyABC documentation built on Jan. 6, 2023, 1:14 a.m.