Nothing
####################### INTERNAL FUNCTIONS
## Priors functions handling
.create_dynamic_prior = function(sampleName, sampleArgs, densityName, densityArgs,
isUniform = FALSE) {
# $sampling: sample function with the given arguments. The used function (given
# by 'name' argument) takes the arguments 'args' for generating a sample.
# $density: create the density function with the given arguments. The used
# function (given by 'name' argument) takes as arguments the quantile value and
# the given 'args' for computing the density. $isUniform: indicates if this
# prior follows an uniform distribution (condition for methods that need LHS)
list(sampling = function() {
do.call(sampleName, as.list(as.numeric(sampleArgs)))
}, density = function(value) {
do.call(densityName, as.list(as.numeric(c(value, densityArgs))))
}, isUniform = isUniform || sampleName == "runif", sampleArgs = sampleArgs)
}
# Legacy functions keeped for compatibility with older versions and easyness
.create_legacy_prior = function(name, args) {
name = name
args = args
switch(EXPR = name, unif = .create_dynamic_prior("runif", c(1, args), "dunif",
args, TRUE), normal = .create_dynamic_prior("rnorm", c(1, args), "dnorm",
args, TRUE), lognormal = .create_dynamic_prior("rlnorm", c(1, args), "dlnorm",
args, TRUE), exponential = .create_dynamic_prior("rexp", c(1, args), "dexp",
args, TRUE))
}
# Process the priors specifications and return a list when each element contains
# the sample function and the density function
.process_prior = function(prior) {
if (!is.list(prior))
stop("'prior' has to be a list")
l = length(prior)
new_prior = list()
for (i in 1:l) {
if (is.list(prior[[i]][1])) {
if (length(prior[[i]]) != 2) {
stop(paste("Incorrect prior specification for '", prior[[i]], "'. Please refer to the documentation.",
sep = ""))
}
new_prior[[i]] = .create_dynamic_prior(prior[[i]][[1]][1], prior[[i]][[1]][-1],
prior[[i]][[2]][1], prior[[i]][[2]][-1])
} else {
if (any(prior[[i]][1] == c("unif", "normal", "lognormal", "exponential"))) {
if (prior[[i]][1] == "exponential") {
if (length(prior[[i]]) != 2) {
stop(paste("Incomplete prior information for parameter ", i,
sep = ""))
}
} else {
if (length(prior[[i]]) != 3) {
stop(paste("Incomplete prior information for parameter ", i,
sep = ""))
}
}
new_prior[[i]] = .create_legacy_prior(prior[[i]][1], prior[[i]][-1])
} else {
stop(paste("Only the methods 'unif', 'normal, 'lognormal' and 'exponential' are wrapped in EasyABC, unknown function '",
prior[[i]][1], "'. Please refer to the documention for specifying your prior.",
sep = ""))
}
}
}
new_prior
}
.wrap_constants_in_model = function(prior, model, use_seed) {
nb_parameters = length(prior)
# detecting constants defined as c('unif',value,value)
constants_mask = array(FALSE, nb_parameters)
constants_values = list()
for (i in 1:nb_parameters) {
if ((prior[[i]][1] == "unif") && (as.numeric(prior[[i]][2]) == as.numeric(prior[[i]][3]))) {
constants_mask[i] = TRUE
constants_values = append(constants_values, as.numeric(prior[[i]][2]))
}
}
constants_values = unlist(constants_values)
new_prior = prior[!constants_mask]
if (use_seed) {
constants_mask = c(FALSE, constants_mask)
nb_parameters = nb_parameters + 1
}
old_model = model
# returning the prior without constants, and a new function that wraps the model
# with the constants
list(new_prior = new_prior, new_model = function(parameters) {
param_with_constants = array(0, nb_parameters)
param_with_constants[constants_mask] = constants_values
param_with_constants[!constants_mask] = parameters
old_model(param_with_constants)
})
}
## function to compute a distance between a matrix of simulated statistics (row:
## different simulations, columns: different summary statistics) and the array of
## data summary statistics
.compute_dist <- function(summary_stat_target, simul, sd_simul, dist_weights=NULL) {
l = length(summary_stat_target)
# If simul is not a matrix (which happens when l == 1) we tranform it into a
# matrix
if (!is.matrix(simul)) {
if (length(summary_stat_target) == 1) {
simul <- matrix(simul, length(simul), 1)
} else {
simul <- matrix(simul, 1, length(simul))
}
}
dist=NULL
if (!is.null(dist_weights)) {
for (i in 1:l){
dist = dist + (simul[,i] - summary_stat_target[i]) * (simul[,i] - summary_stat_target[i]) * (dist_weights[i]/sum(dist_weights))
}
} else {
vartab = sd_simul^2
# Ensure positivity of variances: the elements of vartab that are close to zero
# are set to one
vartab[vartab == 0] = 1
dist=colSums((t(simul) - as.vector(summary_stat_target))^2/as.vector(vartab))
}
dist
}
## function to select the simulations that are at a distance smaller than tol from
## the data
.selec_simul <- function(summary_stat_target, param, simul, sd_simul, tol, dist_weights) {
dist = .compute_dist(summary_stat_target, simul, sd_simul, dist_weights=dist_weights)
ll = length(dist[dist < tol])
# select data with type checking
select_data = function(data) {
dd = dim(data)[1]
if (!is.null(dd)) {
if (ll > 1) {
result = data[dist < tol, ]
} else {
if (ll == 1) {
result = as.matrix(data[dist < tol, ])
dim(result) = c(dim(result)[2], dim(result)[1])
} else {
result = NULL
}
}
} else {
if (ll >= 1) {
result = as.matrix(data[dist < tol])
} else {
result = NULL
}
}
result
}
param2 = select_data(param)
simul2 = select_data(simul)
cbind(param2, simul2)
}
## function to randomly pick a particle from a weighted array (of sum=1)
.particle_pick <- function(param, tab_weight) {
weight_cum = cumsum(tab_weight/sum(tab_weight))
pos = 1:length(tab_weight)
p = min(pos[weight_cum > runif(1)])
res = NULL
if (!is.null(dim(param)[1])) {
res = param[p, ]
} else {
res = param[p]
}
res
}
## function to check whether moved parameters are still in the prior distribution
.is_included <- function(res, prior) {
test = TRUE
for (i in 1:length(prior)) {
test = test && (prior[[i]]$density(res[i]) > 0)
}
test
}
## function to move a particle
.move_particle <- function(param_picked, varcov_matrix) {
# library(mnormt)
rmnorm(n = 1, mean = param_picked, varcov_matrix)
}
## function to move a particle
.move_particleb <- function(param_picked, varcov_matrix, prior, max_pick=10000) {
# with package mnormt library(mnormt)
test = FALSE
counter = 0
while ((!test) && (counter < max_pick)) {
counter = counter + 1
res = rmnorm(n = 1, mean = param_picked, varcov_matrix)
test = .is_included(res, prior)
}
if (counter == max_pick) {
stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
}
res
}
## return if the prior_test use correct parameter names, stop if there is an error
.check_prior_test <- function(nb_parameters, prior_test) {
m = gregexpr("[xX]([0-9])+", prior_test)
result = regmatches(prior_test, m)
for (i in 1:length(result[[1]])) {
parameter_index = substring(result[[1]][i], 2)
if (parameter_index > nb_parameters) {
stop(paste("Parameter out of range: ", result[[1]][i], sep = ""))
}
}
TRUE
}
## test if the sampled parameter is passing the constraint test (if given by user)
.is_in_parameter_constraints <- function(parameter, test) {
is.null(test) || eval(parse(text = gsub("[xX]([0-9]+)", "parameter[\\1]", test)))
}
## sample according to the prior definition, a test can be given as 'x1 < x2'
.sample_prior <- function(prior, test) {
l = length(prior)
param = NULL
test_passed = FALSE
while (!test_passed) {
for (i in 1:l) {
param[i] = prior[[i]]$sampling()
}
test_passed = .is_in_parameter_constraints(param, test)
}
param
}
.ABC_rejection_internal <- function(model, prior, prior_test, nb_simul, use_seed,
seed_count, verbose = FALSE, progressbarwidth = 0) {
options(scipen = 50)
tab_simul_summarystat = NULL
tab_param = NULL
pb = NULL
if (progressbarwidth > 0) {
pb = .progressBar(width = progressbarwidth)
}
if (verbose) {
write.table(NULL, file = "output", row.names = F, col.names = F, quote = F)
}
l = length(prior)
start = Sys.time()
for (i in 1:nb_simul) {
param = .sample_prior(prior, prior_test)
if (use_seed) {
param = c((seed_count + i), param)
}
simul_summarystat = model(param)
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(simul_summarystat))
if (use_seed) {
tab_param = rbind(tab_param, param[2:(l + 1)])
if (verbose) {
intermed = c(param[2:(l + 1)], simul_summarystat)
write(intermed, file = "output", ncolumns = length(intermed), append = T)
}
} else {
tab_param = rbind(tab_param, param)
if (verbose) {
intermed = c(param, simul_summarystat)
write(intermed, file = "output", ncolumns = length(intermed), append = T)
}
}
if (!is.null(pb)) {
duration = difftime(Sys.time(), start, units = "secs")
text = ""
if (i == nb_simul) {
text = paste("Completed in", format(.POSIXct(duration, tz = "GMT"),
"%H:%M:%S"), " ")
} else {
text = paste("Time elapsed:", format(.POSIXct(duration, tz = "GMT"),
"%H:%M:%S"), "Estimated time remaining:", format(.POSIXct(duration/i *
(nb_simul - i), tz = "GMT"), "%H:%M:%S"))
}
.updateProgressBar(pb, i/nb_simul, text)
}
}
if (!is.null(pb)) {
close(pb)
}
options(scipen = 0)
list(param = as.matrix(tab_param), summarystat = as.matrix(tab_simul_summarystat),
start = start)
}
## function to compute particle weights
.compute_weight_prior <- function(particle, prior) {
res = 1
for (i in 1:length(prior)) {
res = res * prior[[i]]$density(particle[i])
}
res
}
.compute_weight_prior_tab <- function(particle, prior) {
l = dim(particle)[1]
res = array(0, l)
for (i in 1:l) {
res[i] = .compute_weight_prior(particle[i, ], prior)
}
res
}
.compute_weight <- function(param_simulated, param_previous_step, tab_weight, prior) {
vmat = as.matrix(2 * cov.wt(as.matrix(param_previous_step), as.vector(tab_weight))$cov)
n_particle = dim(param_previous_step)[1]
n_new_particle = dim(param_simulated)[1]
l = dim(param_previous_step)[2]
if (is.null(n_particle)) {
n_particle = length(param_previous_step)
n_new_particle = length(param_simulated)
l = 1
}
tab_weight_new = array(0, n_new_particle)
invmat = 0.5 * solve(vmat)
for (i in 1:n_particle) {
for (k in 1:n_new_particle) {
if (l > 1) {
temp = as.numeric(param_simulated[k, ]) - param_previous_step[i,
]
tab_weight_new[k] = tab_weight_new[k] + tab_weight[i] * as.numeric(exp(-t(temp) %*%
invmat %*% temp))
} else {
temp = as.numeric(param_simulated[k]) - param_previous_step[i]
tab_weight_new[k] = tab_weight_new[k] + tab_weight[i] * as.numeric(exp(-t(temp) %*%
invmat %*% temp))
}
}
}
tab_weight_prior = .compute_weight_prior_tab(param_simulated, prior)
tab_weight_new = tab_weight_prior/tab_weight_new
tab_weight_new/sum(tab_weight_new)
}
## function to move a particle with a unidimensional normal jump
.move_particle_uni <- function(param_picked, sd_array) {
res = param_picked
for (i in 1:length(param_picked)) {
res[i] = rnorm(n = 1, mean = param_picked[i], sd_array[i])
}
res
}
## function to move a particle with a unidimensional normal jump
.move_particleb_uni <- function(param_picked, sd_array, prior, max_pick=10000) {
test = FALSE
res = param_picked
counter = 0
while ((!test) && (counter < max_pick)) {
counter = counter + 1
for (i in 1:length(param_picked)) {
res[i] = rnorm(n = 1, mean = param_picked[i], sd_array[i])
}
test = .is_included(res, prior)
}
if (counter == max_pick) {
stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
}
res
}
## function to compute particle weights with unidimensional jumps
.compute_weight_uni <- function(param_simulated, param_previous_step, tab_weight,
prior) {
l = dim(param_previous_step)[2]
if (!is.null(l)) {
n_particle = dim(param_previous_step)[1]
n_new_particle = dim(param_simulated)[1]
var_array = array(1, l)
multi = (1/sqrt(2 * pi))^l
for (j in 1:l) {
var_array[j] = 4 * diag(cov.wt(as.matrix(param_previous_step[, j]), as.vector(tab_weight))$cov) # computation of a WEIGHTED variance
multi = multi * (1/sqrt(var_array[j]/2))
}
} else {
l = 1
n_particle = length(param_previous_step)
n_new_particle = length(param_simulated)
multi = (1/sqrt(2 * pi))
var_array = 4 * diag(cov.wt(as.matrix(param_previous_step), as.vector(tab_weight))$cov) # computation of a WEIGHTED variance
multi = multi * (1/sqrt(var_array/2))
}
var_array = as.numeric(var_array)
tab_weight_new = array(0, n_new_particle)
for (i in 1:n_particle) {
tab_temp = array(tab_weight[i] * multi, n_new_particle)
if (l > 1) {
for (k in 1:l) {
tab_temp = tab_temp * exp(-(as.numeric(param_simulated[, k]) - as.numeric(param_previous_step[i,
k])) * (as.numeric(param_simulated[, k]) - as.numeric(param_previous_step[i,
k]))/var_array[k])
}
} else {
tab_temp = tab_temp * exp(-(as.numeric(param_simulated) - as.numeric(param_previous_step[i])) *
(as.numeric(param_simulated) - as.numeric(param_previous_step[i]))/var_array)
}
tab_weight_new = tab_weight_new + tab_temp
}
tab_weight_prior = .compute_weight_prior_tab(param_simulated, prior)
tab_weight_new = tab_weight_prior/tab_weight_new
tab_weight_new/sum(tab_weight_new)
}
## function to perform ABC simulations from a non-uniform prior and with
## unidimensional jumps
.ABC_launcher_not_uniform_uni <- function(model, prior, param_previous_step, tab_weight,
nb_simul, use_seed, seed_count, inside_prior, max_pick=10000) {
tab_simul_summarystat = NULL
tab_param = NULL
l = dim(param_previous_step)[2]
lp = 1
if (is.null(l)) {
lp = 0
l = length(param_previous_step)
covmat = 2 * cov.wt(as.matrix(param_previous_step), as.vector(tab_weight))$cov # computation of a WEIGHTED variance
} else {
covmat = 2 * cov.wt(as.matrix(param_previous_step), as.vector(tab_weight))$cov # computation of a WEIGHTED variance
}
l_array = dim(param_previous_step)[2]
if (is.null(l_array)) {
l_array = 1
}
sd_array = array(1, l_array)
for (j in 1:l_array) {
sd_array[j] = sqrt(covmat[j, j])
}
for (i in 1:nb_simul) {
if (!inside_prior) {
# pick a particle
if (lp == 0) {
param_picked = .particle_pick(as.matrix(param_previous_step), tab_weight)
} else {
param_picked = .particle_pick(as.matrix(param_previous_step), tab_weight)
}
# move it
if (lp == 0) {
param_moved = .move_particle_uni(as.numeric(param_picked), sd_array) # only variable parameters are moved
} else {
param_moved = .move_particle_uni(as.numeric(param_picked), sd_array) # only variable parameters are moved
}
} else {
test = FALSE
counter = 0
while ((!test) && (counter < max_pick)) {
counter = counter + 1
# pick a particle
if (lp == 0) {
param_picked = .particle_pick(param_previous_step, tab_weight)
} else {
param_picked = .particle_pick(param_previous_step, tab_weight)
}
# move it
if (lp == 0) {
param_moved = .move_particle_uni(as.numeric(param_picked), sd_array) # only variable parameters are moved
test = .is_included(param_moved, prior)
} else {
param_moved = .move_particle_uni(as.numeric(param_picked), sd_array) # only variable parameters are moved
test = .is_included(param_moved, prior)
}
}
if (counter == max_pick) {
stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
}
}
if (lp == 0) {
param = param_previous_step[1]
} else {
param = param_previous_step[1, ]
}
param = param_moved
if (use_seed) {
param = c((seed_count + i), param)
}
simul_summarystat = model(param)
tab_simul_summarystat = rbind(tab_simul_summarystat, simul_summarystat)
if (use_seed) {
tab_param = rbind(tab_param, param[2:(l + 1)])
} else {
tab_param = rbind(tab_param, param)
}
}
cbind(tab_param, tab_simul_summarystat)
}
## FUNCTION ABC_rejection: brute-force ABC (Pritchard et al. 1999)
.ABC_rejection <- function(model, prior, prior_test, nb_simul, use_seed, seed_count,
verbose, progress_bar) {
nb_simul = floor(nb_simul)
seed_count = floor(seed_count)
pgwidth = 0
if (progress_bar) {
pgwidth = 50
}
rejection = .ABC_rejection_internal(model, prior, prior_test, nb_simul, use_seed,
seed_count, verbose, progressbarwidth = pgwidth)
sd_simul = sapply(as.data.frame(rejection$summarystat), sd)
list(param = rejection$param, stats = as.matrix(rejection$summarystat), weights = array(1/nb_simul,
nb_simul), stats_normalization = as.numeric(sd_simul), nsim = nb_simul, computime = as.numeric(difftime(Sys.time(),
rejection$start, units = "secs")))
}
## PMC ABC algorithm: Beaumont et al. Biometrika 2009
.ABC_PMC <- function(model, prior, prior_test, nb_simul, summary_stat_target, use_seed,
verbose, dist_weights=NULL, seed_count = 0, inside_prior = TRUE, tolerance_tab = -1, progress_bar = FALSE, max_pick=10000) {
## checking errors in the inputs
if (!is.vector(seed_count))
stop("'seed_count' has to be a number.")
if (length(seed_count) > 1)
stop("'seed_count' has to be a number.")
if (seed_count < 0)
stop("'seed_count' has to be a positive number.")
seed_count = floor(seed_count)
if (!is.logical(inside_prior))
stop("'inside_prior' has to be boolean.")
if (!is.vector(tolerance_tab))
stop("'tolerance_tab' has to be a vector.")
if (tolerance_tab[1] == -1)
stop("'tolerance_tab' is missing")
if (min(tolerance_tab) <= 0)
stop("tolerance values have to be strictly positive.")
lll = length(tolerance_tab)
if (lll <= 1)
stop("at least two tolerance values need to be provided.")
if (min(tolerance_tab[1:(lll - 1)] - tolerance_tab[2:lll]) <= 0)
stop("tolerance values have to decrease.")
if (!is.logical(progress_bar))
stop("'progress_bar' has to be boolean.")
if (progress_bar) {
print(" ------ Beaumont et al. (2009)'s algorithm ------")
}
start = Sys.time()
seed_count_ini = seed_count
T = length(tolerance_tab)
nparam = length(prior)
if (is.null(nparam)) {
nparam = 1
}
nstat = length(summary_stat_target)
## step 1
nb_simul_step = nb_simul
simul_below_tol = NULL
while (nb_simul_step > 0) {
if (nb_simul_step > 1) {
# classic ABC step
tab_ini = .ABC_rejection_internal(model, prior, prior_test, nb_simul_step,
use_seed, seed_count)
if (nb_simul_step == nb_simul) {
sd_simul = sapply(as.data.frame(tab_ini$summarystat), sd) # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
}
seed_count = seed_count + nb_simul_step
# selection of simulations below the first tolerance level
simul_below_tol = rbind(simul_below_tol, .selec_simul(summary_stat_target,
tab_ini$param, tab_ini$summarystat, sd_simul, tolerance_tab[1], dist_weights=dist_weights))
if (length(simul_below_tol) > 0) {
nb_simul_step = nb_simul - dim(simul_below_tol)[1]
}
} else {
tab_ini = .ABC_rejection_internal(model, prior, prior_test, nb_simul_step,
use_seed, seed_count)
seed_count = seed_count + nb_simul_step
if (.compute_dist(summary_stat_target, tab_ini$summarystat, sd_simul, dist_weights=dist_weights) <
tolerance_tab[1]) {
simul_below_tol = rbind(simul_below_tol, cbind(tab_ini$param, tab_ini$summarystat))
nb_simul_step = 0
}
}
} # until we get nb_simul simulations below the first tolerance threshold
# initially, weights are equal
tab_weight = array(1/nb_simul, nb_simul)
intermediary_steps = list(NULL)
if (verbose == TRUE) {
write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = "output_step1",
row.names = F, col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1",
row.names = F, col.names = F, quote = F)
intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - seed_count_ini),
posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
}
if (progress_bar) {
print("step 1 completed")
}
## steps 2 to T
for (it in 2:T) {
nb_simul_step = nb_simul
simul_below_tol2 = NULL
while (nb_simul_step > 0) {
if (nb_simul_step > 1) {
# Sampling of parameters around the previous particles
tab_ini = .ABC_launcher_not_uniform_uni(model, prior, as.matrix(simul_below_tol[,
1:nparam]), tab_weight, nb_simul_step, use_seed, seed_count, inside_prior, max_pick)
seed_count = seed_count + nb_simul_step
simul_below_tol2 = rbind(simul_below_tol2, .selec_simul(summary_stat_target,
tab_ini[, 1:nparam], tab_ini[, (nparam + 1):(nparam + nstat)],
sd_simul, tolerance_tab[it], dist_weights=dist_weights))
if (length(simul_below_tol2) > 0) {
nb_simul_step = nb_simul - dim(simul_below_tol2)[1]
}
} else {
tab_ini = .ABC_launcher_not_uniform_uni(model, prior, as.matrix(simul_below_tol[,
1:nparam]), tab_weight, nb_simul_step, use_seed, seed_count, inside_prior, max_pick)
seed_count = seed_count + nb_simul_step
if (.compute_dist(summary_stat_target, tab_ini[(nparam + 1):(nparam +
nstat)], sd_simul, dist_weights=dist_weights) < tolerance_tab[it]) {
simul_below_tol2 = rbind(simul_below_tol2, tab_ini)
nb_simul_step = 0
}
}
} # until we get nb_simul simulations below the it-th tolerance threshold
# update of particle weights
tab_weight2 = .compute_weight_uni(as.matrix(as.matrix(simul_below_tol2[,
1:nparam])), as.matrix(as.matrix(simul_below_tol[, 1:nparam])), tab_weight,
prior)
# update of the set of particles and of the associated weights for the next ABC
# sequence
tab_weight = tab_weight2
simul_below_tol = matrix(0, nb_simul, (nparam + nstat))
for (i1 in 1:nb_simul) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[i1, i2])
}
}
if (verbose == TRUE) {
write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = paste("output_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
intermediary_steps[[it]] = list(n_simul_tot = as.numeric(seed_count -
seed_count_ini), posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
}
if (progress_bar) {
print(paste("step ", it, " completed", sep = ""))
}
}
final_res = NULL
if (verbose == TRUE) {
final_res = list(param = as.matrix(simul_below_tol[, 1:nparam]), stats = as.matrix(simul_below_tol[,
(nparam + 1):(nparam + nstat)]), weights = tab_weight/sum(tab_weight),
stats_normalization = as.numeric(sd_simul), epsilon = max(.compute_dist(summary_stat_target,
as.matrix(simul_below_tol[, (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)),
nsim = (seed_count - seed_count_ini), computime = as.numeric(difftime(Sys.time(),
start, units = "secs")), intermediary = intermediary_steps)
} else {
final_res = list(param = as.matrix(simul_below_tol[, 1:nparam]), stats = as.matrix(simul_below_tol[,
(nparam + 1):(nparam + nstat)]), weights = tab_weight/sum(tab_weight),
stats_normalization = as.numeric(sd_simul), epsilon = max(.compute_dist(summary_stat_target,
as.matrix(simul_below_tol[, (nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)),
nsim = (seed_count - seed_count_ini), computime = as.numeric(difftime(Sys.time(),
start, units = "secs")))
}
final_res
}
## function to select the alpha quantile closest simulations
.selec_simul_alpha <- function(summary_stat_target, param, simul, sd_simul, alpha, dist_weights) {
dist = .compute_dist(summary_stat_target, simul, sd_simul, dist_weights=dist_weights)
n_alpha = ceiling(alpha * length(dist))
tol = sort(dist)[n_alpha]
ll = length(dist[!is.na(dist) & dist < tol])
if (ll == 0) {
param2 = NULL
simul2 = NULL
} else {
if (!is.null(dim(param)[1])) {
if (ll > 1) {
param2 = param[!is.na(dist) & dist <= tol, ]
} else {
param2 = as.matrix(param[!is.na(dist) & dist <= tol, ])
dim(param2) = c(dim(param2)[2], dim(param2)[1])
}
} else {
param2 = as.matrix(param[!is.na(dist) & dist <= tol])
}
if (!is.null(dim(simul)[1])) {
if (ll > 1) {
simul2 = simul[!is.na(dist) & dist <= tol, ]
} else {
simul2 = as.matrix(simul[!is.na(dist) & dist <= tol, ])
dim(simul2) = c(dim(simul2)[2], dim(simul2)[1])
}
} else {
simul2 = as.matrix(simul[!is.na(dist) & dist <= tol])
}
}
cbind(param2, simul2)
}
## function to select the simulations that are at a distance smaller are equal to
## tol from the data
.selec_simulb <- function(summary_stat_target, param, simul, sd_simul, tol, dist_weights) {
dist = .compute_dist(summary_stat_target, simul, sd_simul, dist_weights=dist_weights)
ll = length(dist[dist <= tol])
if (ll == 0) {
param2 = NULL
simul2 = NULL
} else {
if (!is.null(dim(param)[1])) {
if (ll > 1) {
param2 = param[dist <= tol, ]
} else {
param2 = as.matrix(param[dist <= tol, ])
dim(param2) = c(dim(param2)[2], dim(param2)[1])
}
} else {
param2 = as.matrix(param[dist <= tol])
}
if (!is.null(dim(simul)[1])) {
if (ll > 1) {
simul2 = simul[dist <= tol, ]
} else {
simul2 = as.matrix(simul[dist <= tol, ])
dim(simul2) = c(dim(simul2)[2], dim(simul2)[1])
}
} else {
simul2 = as.matrix(simul[dist <= tol])
}
}
cbind(param2, simul2)
}
## sequential algorithm of Drovandi & Pettitt 2011 - the proposal used is a
## multivariate normal (cf paragraph 2.2 - p. 227 in Drovandi & Pettitt 2011)
.ABC_Drovandi <- function(model, prior, prior_test, nb_simul, summary_stat_target,
use_seed, verbose, tolerance_tab = -1, alpha = 0.5, c = 0.01, first_tolerance_level_auto = TRUE,
dist_weights=NULL, seed_count = 0, progress_bar = FALSE, max_pick=10000) {
## checking errors in the inputs
if (!is.vector(tolerance_tab))
stop("'tolerance_tab' has to be a vector.")
if (tolerance_tab[1] == -1)
stop("'tolerance_tab' is missing")
if (min(tolerance_tab) <= 0)
stop("'tolerance values have to be strictly positive.")
lll = length(tolerance_tab)
if (lll > 1) {
if (min(tolerance_tab[1:(lll - 1)] - tolerance_tab[2:lll]) <= 0)
stop("'tolerance values have to decrease.")
}
if (!is.vector(alpha))
stop("'alpha' has to be a number.")
if (length(alpha) > 1)
stop("'alpha' has to be a number.")
if (alpha <= 0)
stop("'alpha' has to be between 0 and 1.")
if (alpha >= 1)
stop("'alpha' has to be between 0 and 1.")
if (!is.vector(c))
stop("'c' has to be a vector.")
if (length(c) > 1)
stop("'c' has to be a number.")
if (c <= 0)
stop("'c' has to be between 0 and 1.")
if (c >= 1)
stop("'c' has to be between 0 and 1.")
if (!is.logical(first_tolerance_level_auto))
stop("'first_tolerance_level_auto' has to be boolean.")
if (!is.vector(seed_count))
stop("'seed_count' has to be a number.")
if (length(seed_count) > 1)
stop("'seed_count' has to be a number.")
if (seed_count < 0)
stop("'seed_count' has to be a positive number.")
seed_count = floor(seed_count)
if (!is.logical(progress_bar))
stop("'progress_bar' has to be boolean.")
start = Sys.time()
progressbarwidth = 0
if (progress_bar) {
print(" ------ Drovandi & Pettitt (2011)'s algorithm ------")
progressbarwidth = 50
}
seed_count_ini = seed_count
n_alpha = ceiling(nb_simul * alpha)
nparam = length(prior)
if (is.null(nparam)) {
nparam = 1
}
nstat = length(summary_stat_target)
if (first_tolerance_level_auto) {
tol_end = tolerance_tab[1]
} else {
tol_end = tolerance_tab[2]
}
if (progress_bar) {
print(paste("targetted tolerance = ", tol_end, sep = ""))
}
## step 1
nb_simul_step = ceiling(nb_simul/(1 - alpha))
simul_below_tol = NULL
if (first_tolerance_level_auto) {
# classic ABC step
tab_ini = .ABC_rejection_internal(model, prior, prior_test, nb_simul_step,
use_seed, seed_count, progressbarwidth)
sd_simul = sapply(as.data.frame(tab_ini$summarystat), sd) # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
seed_count = seed_count + nb_simul_step
# selection of simulations below the first tolerance level
simul_below_tol = rbind(simul_below_tol, .selec_simul_alpha(summary_stat_target,
tab_ini$param, tab_ini$summarystat, sd_simul, (1 - alpha), dist_weights=dist_weights))
simul_below_tol = as.matrix(simul_below_tol[1:nb_simul, ]) # to be sure that there are not two or more simulations at a distance equal to the tolerance determined by the quantile
} else {
nb_simul_step = nb_simul
while (nb_simul_step > 0) {
if (nb_simul_step > 1) {
# classic ABC step
tab_ini = .ABC_rejection_internal(model, prior, prior_test, nb_simul_step,
use_seed, seed_count)
if (nb_simul_step == nb_simul) {
sd_simul = sapply(as.data.frame(tab_ini$summarystat), sd) # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
}
seed_count = seed_count + nb_simul_step
# selection of simulations below the first tolerance level
simul_below_tol = rbind(simul_below_tol, .selec_simulb(summary_stat_target,
tab_ini$param, tab_ini$summarystat, sd_simul, tolerance_tab[1], dist_weights=dist_weights)) # we authorize the simulation to be equal to the tolerance level, for consistency with the quantile definition of the tolerance
if (length(simul_below_tol) > 0) {
nb_simul_step = nb_simul - dim(simul_below_tol)[1]
}
} else {
tab_ini = .ABC_rejection_internal(model, prior, prior_test, nb_simul_step,
use_seed, seed_count)
seed_count = seed_count + nb_simul_step
if (.compute_dist(summary_stat_target, tab_ini$summarystat, sd_simul, dist_weights=dist_weights) <=
tolerance_tab[1]) {
simul_below_tol = rbind(simul_below_tol, cbind(tab_ini$param, tab_ini$summarystat))
nb_simul_step = 0
}
}
} # until we get nb_simul simulations below the first tolerance threshold
}
# initially, weights are equal
tab_weight = array(1/nb_simul, nb_simul)
intermediary_steps = list(NULL)
if (verbose == TRUE) {
write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = "output_step1",
row.names = F, col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1",
row.names = F, col.names = F, quote = F)
intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - seed_count_ini),
posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
}
if (progress_bar) {
print("step 1 completed")
}
## following steps until tol_end is reached
tol_next = tolerance_tab[1]
if (first_tolerance_level_auto) {
tol_next = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights))
}
R = 1
l = dim(simul_below_tol)[2]
it = 1
while (tol_next > tol_end) {
it = it + 1
i_acc = 0
nb_simul_step = n_alpha
# compute epsilon_next
tol_next = sort(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights))[(nb_simul - n_alpha)]
# drop the n_alpha poorest particles
simul_below_tol2 = .selec_simulb(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
1:nparam]), as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam +
nstat)]), sd_simul, tol_next, dist_weights=dist_weights) # we authorize the simulation to be equal to the tolerance level, for consistency with the quantile definition of the tolerance
simul_below_tol = matrix(0, (nb_simul - n_alpha), (nparam + nstat))
for (i1 in 1:(nb_simul - n_alpha)) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[i1, i2])
}
}
simul_below_tol2 = NULL
startb = Sys.time()
# progress bar
pb = NULL
if (progress_bar) {
pb <- .progressBar(width = 50)
}
duration = 0
for (i in 1:nb_simul_step) {
# pick a particle
simul_picked = .particle_pick(simul_below_tol, tab_weight[1:(nb_simul -
n_alpha)])
for (j in 1:R) {
# move it
param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(simul_below_tol[,
1:nparam]))), prior, max_pick)
param = simul_picked[1:nparam]
param = param_moved
if (use_seed) {
param = c((seed_count + j), param)
}
# perform a simulation
new_simul = c(param, model(param))
if (use_seed) {
new_simul = new_simul[2:(l + 1)]
}
# check whether it is below tol_next and undo the move if it is not
if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam +
1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
# we authorize the simulation to be equal to the tolerance level, for consistency
# with the quantile definition of the tolerance
simul_picked = as.numeric(new_simul)
i_acc = i_acc + 1
}
}
seed_count = seed_count + R
simul_below_tol2 = rbind(simul_below_tol2, simul_picked)
# for progressbar message and time evaluation
if (progress_bar) {
duration = difftime(Sys.time(), startb, units = "secs")
text = ""
if (i == nb_simul_step) {
text = paste("Step ", it, " completed in", format(.POSIXct(duration,
tz = "GMT"), "%H:%M:%S"), " ")
} else {
text = paste("Time elapsed during step ", it, ":", format(.POSIXct(duration,
tz = "GMT"), "%H:%M:%S"), "Estimated time remaining for step ",
it, ":", format(.POSIXct(duration/i * (nb_simul_step - i), tz = "GMT"),
"%H:%M:%S"))
}
.updateProgressBar(pb, i/nb_simul_step, text)
}
}
if (progress_bar) {
close(pb)
}
simul_below_tol3 = matrix(0, nb_simul, (nparam + nstat))
for (i1 in 1:(nb_simul - n_alpha)) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol3[i1, i2] = as.numeric(simul_below_tol[i1, i2])
}
}
for (i1 in (nb_simul - n_alpha + 1):nb_simul) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol3[i1, i2] = as.numeric(simul_below_tol2[(i1 - nb_simul +
n_alpha), i2])
}
}
simul_below_tol = simul_below_tol3
p_acc = max(1, i_acc)/(nb_simul_step * R) # to have a strictly positive p_acc
Rp = R
if (p_acc < 1) {
R = ceiling(log(c)/log(1 - p_acc))
} else {
R = 1
}
if (verbose == TRUE) {
write.table(as.numeric(Rp), file = paste("R_step", it, sep = ""), row.names = F,
col.names = F, quote = F)
write.table(as.numeric(tol_next), file = paste("tolerance_step", it,
sep = ""), row.names = F, col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = paste("output_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
intermediary_steps[[it]] = list(n_simul_tot = as.numeric(seed_count -
seed_count_ini), R_step = as.numeric(Rp), tol_step = as.numeric(tol_next),
posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
}
tol_next = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights))
if (progress_bar) {
print(paste("step ", it, " completed - R used = ", Rp, " - tol = ", tol_next,
" - next R used will be ", R, sep = ""))
}
}
## final step to diversify the n_alpha particles
simul_below_tol2 = NULL
for (i in 1:nb_simul) {
simul_picked = simul_below_tol[i, ]
for (j in 1:R) {
# move it
param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(simul_below_tol[,
1:nparam]))), prior, max_pick)
param = simul_picked[1:nparam]
param = param_moved
if (use_seed) {
param = c((seed_count + j), param)
}
# perform a simulation
new_simul = c(param, model(param))
if (use_seed) {
new_simul = new_simul[2:(l + 1)]
}
# check whether it is below tol_next and undo the move if it is not
if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam +
1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
# we authorize the simulation to be equal to the tolerance level, for consistency
# with the quantile definition of the tolerance
simul_picked = as.numeric(new_simul)
}
}
seed_count = seed_count + R
simul_below_tol2 = rbind(simul_below_tol2, as.numeric(simul_picked))
}
final_res = NULL
if (verbose == TRUE) {
final_res = list(param = as.matrix(simul_below_tol2[, 1:nparam]), stats = as.matrix(simul_below_tol2[,
(nparam + 1):(nparam + nstat)]), weights = tab_weight/sum(tab_weight),
stats_normalization = as.numeric(sd_simul), epsilon = max(.compute_dist(summary_stat_target,
as.matrix(as.matrix(simul_below_tol2)[, (nparam + 1):(nparam + nstat)]),
sd_simul, dist_weights=dist_weights)), nsim = (seed_count - seed_count_ini), computime = as.numeric(difftime(Sys.time(),
start, units = "secs")), intermediary = intermediary_steps)
} else {
final_res = list(param = as.matrix(simul_below_tol2[, 1:nparam]), stats = as.matrix(simul_below_tol2[,
(nparam + 1):(nparam + nstat)]), weights = tab_weight/sum(tab_weight),
stats_normalization = as.numeric(sd_simul), epsilon = max(.compute_dist(summary_stat_target,
as.matrix(as.matrix(simul_below_tol2)[, (nparam + 1):(nparam + nstat)]),
sd_simul, dist_weights=dist_weights)), nsim = (seed_count - seed_count_ini), computime = as.numeric(difftime(Sys.time(),
start, units = "secs")))
}
final_res
}
## rejection algorithm with M simulations per parameter set
.ABC_rejection_M <- function(model, prior, prior_test, nb_simul, M, use_seed, seed_count) {
tab_simul_summarystat = NULL
tab_param = NULL
l = length(prior)
if (is.null(l)) {
l = 1
}
for (i in 1:nb_simul) {
param = .sample_prior(prior, prior_test)
for (k in 1:M) {
if (use_seed) {
param = c((seed_count + 1), param)
}
seed_count = seed_count + 1
simul_summarystat = model(param)
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(simul_summarystat))
if (use_seed) {
param = param[2:(l + 1)]
}
tab_param = rbind(tab_param, as.numeric(param))
}
}
cbind(tab_param, tab_simul_summarystat)
}
## function to compute a distance between a matrix of simulated statistics and the
## array of data summary statistics - for M replicates simulations
.compute_dist_M <- function(M, summary_stat_target, simul, sd_simul, dist_weights=NULL) {
l = length(summary_stat_target)
nsimul = dim(simul)[1]
if (is.null(nsimul)) {
nsimul = length(simul)
}
dist = array(0, nsimul)
if (!is.null(dist_weights)) {
# TODO test if len(dist_weights)==len(summary_stat_target)
for (i in 1:l) {
dist = dist + (simul[,i] - summary_stat_target[i]) * (simul[,i] - summary_stat_target[i]) * (dist_weights[i]/sum(dist_weights))
}
} else {
vartab = array(1, l)
if (l > 1) {
for (i in 1:l) {
vartab[i] = min(1, 1/(sd_simul[i] * sd_simul[i])) ## differences between simul and data are normalized in each dimension by the empirical variances in each dimension
dist = dist + vartab[i] * (simul[, i] - summary_stat_target[i]) * (simul[,i] - summary_stat_target[i]) ## an euclidean distance is used
}
} else {
vartab = min(1, 1/(sd_simul * sd_simul)) ## differences between simul and data are normalized in each dimension by the empirical variances in each dimension
dist = dist + vartab * (simul[, 1] - summary_stat_target) * (simul[, 1] - summary_stat_target) ## an euclidean distance is used
}
}
distb = matrix(0, nsimul/M, M)
for (i in 1:(nsimul/M)) {
for (j in 1:M) {
distb[i, j] = dist[((i - 1) * M + j)]
}
}
distb
}
## function to compute the updated weights, given a new tolerance value
.compute_weight_delmoral <- function(particle_dist_mat, tolerance) {
n_particle = dim(particle_dist_mat)[1]
new_weight = array(0, n_particle)
for (i in 1:n_particle) {
new_weight[i] = length(particle_dist_mat[i, ][particle_dist_mat[i, ] < tolerance])
}
new_weight/sum(new_weight)
}
## function to compute the updated ESS, given a new tolerance value
.compute_ESS <- function(particle_dist_mat, tolerance) {
n_particle = dim(particle_dist_mat)[1]
new_weight = array(0, n_particle)
for (i in 1:n_particle) {
new_weight[i] = length(particle_dist_mat[i, ][particle_dist_mat[i, ] < tolerance])
}
if (sum(new_weight)==0){
return(0)
} else {
new_weight = new_weight/sum(new_weight)
1/(sum(new_weight * new_weight))
}
}
## function to compute the number of simul below a new tolerance value
.compute_below <- function(particle_dist_mat, tolerance) {
n_particle = dim(particle_dist_mat)[1]
new_weight = array(0, n_particle)
for (i in 1:n_particle) {
new_weight[i] = length(particle_dist_mat[i, ][particle_dist_mat[i, ] < tolerance])
}
new_weight
}
## function to randomly pick a particle from a weighted array (of sum=1) for the
## Del Moral algorithm
.particle_pick_delmoral <- function(simul_below_tol, tab_weight, M) {
u = runif(1)
tab_weight2 = tab_weight/sum(tab_weight)
weight_cum = cumsum(tab_weight2)
pos = 1:length(tab_weight)
p = min(pos[weight_cum > u])
simul_below_tol[((1:M) + (p - 1) * M), ]
}
## function to replicate each cell of tab_weight M times
.replicate_tab <- function(tab_weight, M) {
l = length(tab_weight)
tab_weight2 = array(0, M * l)
for (i in 1:l) {
tab_weight2[((i - 1) * M + (1:M))] = tab_weight[i]
}
tab_weight2
}
## sequential algorithm of Del Moral et al. 2012 - the proposal used is a normal
## in each dimension (cf paragraph 3.2 in Del Moral et al. 2012)
.ABC_Delmoral <- function(model, prior, prior_test, nb_simul, summary_stat_target,
use_seed, verbose, alpha = 0.9, M = 1, nb_threshold = floor(nb_simul/2), tolerance_target = -1,
dist_weights=NULL, seed_count = 0, progress_bar = FALSE, max_pick=10000) {
## checking errors in the inputs
if (!is.vector(alpha))
stop("'alpha' has to be a number.")
if (length(alpha) > 1)
stop("'alpha' has to be a number.")
if (alpha <= 0)
stop("'alpha' has to be between 0 and 1.")
if (alpha >= 1)
stop("'alpha' has to be between 0 and 1.")
if (!is.vector(M))
stop("'M' has to be a number.")
if (length(M) > 1)
stop("'M' has to be a number.")
if (M < 1)
stop("'M' has to be a positive integer.")
M = floor(M)
if (!is.vector(nb_threshold))
stop("'nb_threshold' has to be a number.")
if (length(nb_threshold) > 1)
stop("'nb_threshold' has to be a number.")
if (nb_threshold < 1)
stop("'nb_threshold' has to be a positive integer.")
nb_threshold = floor(nb_threshold)
if (!is.vector(tolerance_target))
stop("'tolerance_target' has to be a number.")
if (length(tolerance_target) > 1)
stop("'tolerance_target' has to be a number.")
if (tolerance_target <= 0)
stop("'tolerance_target' has to be positive.")
if (!is.vector(seed_count))
stop("'seed_count' has to be a number.")
if (length(seed_count) > 1)
stop("'seed_count' has to be a number.")
if (seed_count < 0)
stop("'seed_count' has to be a positive number.")
seed_count = floor(seed_count)
if (!is.logical(progress_bar))
stop("'progress_bar' has to be boolean.")
start = Sys.time()
if (progress_bar) {
print(" ------ Delmoral et al. (2012)'s algorithm ------")
}
seed_count_ini = seed_count
nparam = length(prior)
if (is.null(nparam)) {
nparam = 1
}
nstat = length(summary_stat_target)
# step 1 classic ABC step
simul_below_tol = .ABC_rejection_M(model, prior, prior_test, nb_simul, M, use_seed,
seed_count)
seed_count = seed_count + M * nb_simul
tab_weight = rep(1/nb_simul, nb_simul)
ESS = nb_simul
uu = (1:nb_simul) * M # to compute sd_simul with only one simulation per parameter set
sd_simul = sapply(as.data.frame(simul_below_tol[uu, (nparam + 1):(nparam + nstat)]),
sd) # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
l = dim(simul_below_tol)[2]
if (M > 1) {
particle_dist_mat = .compute_dist_M(M, summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
} else {
particle_dist_mat = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
}
dim(particle_dist_mat) <- c(nb_simul, M)
new_tolerance = max(particle_dist_mat)
tab_weight2 = .replicate_tab(tab_weight, M)
intermediary_steps = list(NULL)
if (verbose == TRUE) {
write.table(as.matrix(cbind(tab_weight2, simul_below_tol)), file = "output_step1",
row.names = F, col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1",
row.names = F, col.names = F, quote = F)
intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - seed_count_ini),
posterior = as.matrix(cbind(tab_weight2, simul_below_tol)))
}
if (progress_bar) {
print("step 1 completed")
}
# following steps
kstep = 1
while (new_tolerance > tolerance_target) {
kstep = kstep + 1
# determination of the new tolerance
ESS_target = alpha * ESS
tolerance_list = sort(as.numeric(names(table(particle_dist_mat))), decreasing = TRUE)
i = 1
test = FALSE
while ((!test) && (i < length(tolerance_list))) {
i = i + 1
# computation of new ESS with the new tolerance value
new_ESS = .compute_ESS(particle_dist_mat, tolerance_list[i])
# check whether this value is below ESS_targ
if (new_ESS < ESS_target) {
new_tolerance = tolerance_list[(i - 1)]
test = TRUE
}
}
# if effective sample size is too small, resampling of particles
ESS = .compute_ESS(particle_dist_mat, new_tolerance)
tab_weight = .compute_weight_delmoral(particle_dist_mat, new_tolerance)
tab_below = .compute_below(particle_dist_mat, new_tolerance)
particles = matrix(0, (nb_simul * M), (nparam + nstat))
if (ESS < nb_threshold) {
# sample nb_simul particles
for (i in 1:nb_simul) {
particles[((1:M) + (i - 1) * M), ] = as.matrix(.particle_pick_delmoral(simul_below_tol,
tab_weight, M))
}
simul_below_tol = matrix(0, nb_simul * M, (nparam + nstat))
for (i1 in 1:(nb_simul * M)) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[i1, i2] = as.numeric(particles[i1, i2])
}
}
particles = as.matrix(particles[, 1:nparam])
if (M > 1) {
particle_dist_mat = .compute_dist_M(M, summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
} else {
particle_dist_mat = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
}
dim(particle_dist_mat) <- c(nb_simul, M)
tab_below = .compute_below(particle_dist_mat, new_tolerance)
# reset their weight to 1/nb_simul
tab_weight = rep(1/nb_simul, nb_simul)
ESS = nb_simul
} else {
particles = as.matrix(simul_below_tol[, 1:nparam])
}
# MCMC move
covmat = 2 * cov.wt(as.matrix(as.matrix(particles[uu, ])[tab_weight > 0,
]), as.vector(tab_weight[tab_weight > 0]))$cov
l_array = dim(particles)[2]
if (is.null(l_array)) {
l_array = 1
}
sd_array = array(1, l_array)
for (j in 1:l_array) {
sd_array[j] = sqrt(covmat[j, j])
}
simul_below_tol2 = simul_below_tol
simul_below_tol = matrix(0, nb_simul * M, (nparam + nstat))
startb = Sys.time()
# progress bar
if (progress_bar) {
pb <- .progressBar(width = 50)
}
duration = 0
for (i in 1:nb_simul) {
if (tab_weight[i] > 0) {
tab_new_simul = NULL
# move it
param_moved = .move_particleb_uni(as.numeric(particles[(i * M), ]),
sd_array, prior, max_pick)
param = particles[(i * M), ]
param = param_moved
if (use_seed) {
param = c((seed_count + 1), param)
}
# perform M simulations
for (j in 1:M) {
new_simul = c(param, model(param))
if (use_seed) {
param[1] = param[1] + 1
}
seed_count = seed_count + 1
if (use_seed) {
new_simul = new_simul[2:(l + 1)]
}
tab_new_simul = rbind(tab_new_simul, new_simul)
}
if (M > 1) {
tab_new_simul2 = matrix(0, M, (nparam + nstat))
for (i1 in 1:M) {
for (i2 in 1:(nparam + nstat)) {
tab_new_simul2[i1, i2] = as.numeric(tab_new_simul[i1, i2])
}
}
} else {
tab_new_simul2 = as.numeric(tab_new_simul)
}
dim(tab_new_simul2) <- c(M, (nparam + nstat))
# check whether the move is accepted
n_acc = 1
if (M > 1) {
new_dist = .compute_dist_M(M, summary_stat_target, as.matrix(as.matrix(tab_new_simul2)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
n_acc = length(new_dist[new_dist < new_tolerance])
} else {
new_dist = .compute_dist(summary_stat_target, rbind(tab_new_simul2[(nparam +
1):(nparam + nstat)], tab_new_simul2[(nparam + 1):(nparam + nstat)]),
sd_simul, dist_weights=dist_weights)
if (new_dist[1] > new_tolerance) {
n_acc = 0
}
}
MH = min(1, (n_acc/tab_below[i]))
uuu = runif(1)
if (uuu <= MH) {
for (i1 in 1:M) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[((i1) + (i - 1) * M), i2] = as.numeric(tab_new_simul2[i1,
i2])
}
}
} else {
for (i1 in 1:M) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[((i1) + (i - 1) * M), i2] = as.numeric(simul_below_tol2[((i1) +
(i - 1) * M), i2])
}
}
}
} else {
for (i1 in 1:M) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[((i1) + (i - 1) * M), i2] = as.numeric(simul_below_tol2[((i1) +
(i - 1) * M), i2])
}
}
}
# for progressbar message and time evaluation
if (progress_bar) {
duration = difftime(Sys.time(), startb, units = "secs")
text = ""
if (i == nb_simul) {
text = paste("Step ", kstep, " completed in", format(.POSIXct(duration,
tz = "GMT"), "%H:%M:%S"), " ")
} else {
text = paste("Time elapsed during step ", kstep, ":", format(.POSIXct(duration,
tz = "GMT"), "%H:%M:%S"), "Estimated time remaining for step ",
kstep, ":", format(.POSIXct(duration/i * (nb_simul - i), tz = "GMT"),
"%H:%M:%S"))
}
.updateProgressBar(pb, i/nb_simul, text)
}
}
if (progress_bar) {
close(pb)
}
if (M > 1) {
particle_dist_mat = .compute_dist_M(M, summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
} else {
particle_dist_mat = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
}
dim(particle_dist_mat) <- c(nb_simul, M)
tab_weight = .compute_weight_delmoral(particle_dist_mat, new_tolerance)
tab_weight2 = .replicate_tab(tab_weight, M)
if (verbose == TRUE) {
write.table(as.numeric(new_tolerance), file = paste("tolerance_step",
kstep, sep = ""), row.names = F, col.names = F, quote = F)
write.table(as.matrix(cbind(tab_weight2, simul_below_tol)), file = paste("output_step",
kstep, sep = ""), row.names = F, col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step",
kstep, sep = ""), row.names = F, col.names = F, quote = F)
intermediary_steps[[kstep]] = list(n_simul_tot = as.numeric(seed_count -
seed_count_ini), tol_step = as.numeric(new_tolerance), posterior = as.matrix(cbind(tab_weight2,
simul_below_tol)))
}
if (progress_bar) {
print(paste("step ", kstep, " completed - tol =", new_tolerance, sep = ""))
}
}
final_res = NULL
if (verbose == TRUE) {
final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]),
stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam +
nstat)]), weights = tab_weight2/sum(tab_weight2), stats_normalization = as.numeric(sd_simul),
epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
seed_count_ini), computime = as.numeric(difftime(Sys.time(), start,
units = "secs")), intermediary = intermediary_steps)
} else {
final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]),
stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam +
nstat)]), weights = tab_weight2/sum(tab_weight2), stats_normalization = as.numeric(sd_simul),
epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
seed_count_ini), computime = as.numeric(difftime(Sys.time(), start,
units = "secs")))
}
final_res
}
## test if all the prior are defined with uniform distribution
.all_unif <- function(prior) {
res = TRUE
for (i in 1:length(prior)) {
res = res && (prior[[i]]$isUniform)
}
res
}
## function to sample in the prior distributions using a Latin Hypercube sample
## The prior is supposed to be defined with only uniform distributions
.ABC_rejection_lhs <- function(model, prior, prior_test, nb_simul, use_seed, seed_count) {
tab_simul_summarystat = NULL
tab_param = NULL
l = length(prior)
nparam = length(prior)
random_tab = randomLHS(nb_simul, nparam)
lhs_index = 1
for (i in 1:nb_simul) {
test_passed = FALSE
while (!test_passed) {
param = array(0, l)
for (j in 1:l) {
param[j] = as.numeric(prior[[j]]$sampleArgs[2]) + (as.numeric(prior[[j]]$sampleArgs[3]) -
as.numeric(prior[[j]]$sampleArgs[2])) * random_tab[lhs_index, j]
}
test_passed = .is_in_parameter_constraints(param, prior_test)
if (!test_passed) {
lhs_index = lhs_index + 1
random_tab = augmentLHS(random_tab, 1)
}
}
# Ok, we have our particle
lhs_index = lhs_index + 1
if (use_seed) {
param = c((seed_count + i), param)
}
simul_summarystat = model(param)
tab_simul_summarystat = rbind(tab_simul_summarystat, simul_summarystat)
if (use_seed) {
tab_param = rbind(tab_param, param[2:(l + 1)])
} else {
tab_param = rbind(tab_param, param)
}
}
cbind(tab_param, tab_simul_summarystat)
}
## function to compute particle weights without normalizing to 1
.compute_weightb <- function(param_simulated, param_previous_step, tab_weight, prior) {
vmat = as.matrix(2 * cov.wt(as.matrix(param_previous_step), as.vector(tab_weight))$cov)
n_particle = dim(param_previous_step)[1]
n_new_particle = dim(param_simulated)[1]
tab_weight_new = array(0, n_new_particle)
l = dim(param_previous_step)[2]
multi = exp(-0.5 * l * log(2 * pi))/sqrt(abs(det(vmat)))
invmat = 0.5 * solve(vmat)
for (i in 1:n_particle) {
for (k in 1:n_new_particle) {
temp = param_simulated[k, ] - param_previous_step[i, ]
tab_weight_new[k] = tab_weight_new[k] + tab_weight[i] * as.numeric(exp(-t(temp) %*%
invmat %*% temp))
}
}
prior_density = .compute_weight_prior_tab(param_simulated, prior)
tab_weight_new = prior_density/(multi * tab_weight_new)
tab_weight_new
}
## function to compute particle weights with unidimensional jumps without
## normalizing to 1
.compute_weightb_uni <- function(param_simulated, param_previous_step, tab_weight2,
prior) {
tab_weight = tab_weight2/sum(tab_weight2)
l = dim(param_previous_step)[2]
var_array = array(1, l)
multi = (1/sqrt(2 * pi))^l
for (j in 1:l) {
var_array[j] = diag(4 * cov.wt(as.matrix(param_previous_step[, j]), as.vector(tab_weight))$cov)
multi = multi * (1/sqrt(var_array[j]/2))
}
var_array = as.numeric(var_array)
n_particle = dim(param_previous_step)[1]
n_new_particle = dim(param_simulated)[1]
tab_weight_new = array(0, n_new_particle)
for (i in 1:n_particle) {
tab_temp = array(tab_weight[i] * multi, n_new_particle)
for (k in 1:l) {
tab_temp = tab_temp * exp(-(as.numeric(param_simulated[, k]) - as.numeric(param_previous_step[i,
k])) * (as.numeric(param_simulated[, k]) - as.numeric(param_previous_step[i,
k]))/var_array[k])
}
tab_weight_new = tab_weight_new + tab_temp
}
prior_density = .compute_weight_prior_tab(param_simulated, prior)
tab_weight_new = prior_density/tab_weight_new
tab_weight_new
}
## function to perform ABC simulations from a non-uniform prior (derived from a
## set of particles)
.ABC_launcher_not_uniformc <- function(model, prior, param_previous_step, tab_weight,
nb_simul, use_seed, seed_count, inside_prior, progress_bar, max_pick=10000) {
tab_simul_summarystat = NULL
tab_param = NULL
k_acc = 0
startb = Sys.time()
# progress bar
if (progress_bar) {
pb <- .progressBar(width = 50)
}
duration = 0
for (i in 1:nb_simul) {
l = dim(param_previous_step)[2]
if (!inside_prior) {
k_acc = k_acc + 1
# pick a particle
param_picked = .particle_pick(param_previous_step, tab_weight)
# move it
param_moved = .move_particle(as.numeric(param_picked), 2 * cov.wt(as.matrix(as.matrix(param_previous_step)),
as.vector(tab_weight))$cov) # only variable parameters are moved, computation of a WEIGHTED variance
} else {
test = FALSE
counter = 0
while ((!test) && (counter < max_pick)) {
counter = counter + 1
k_acc = k_acc + 1
# pick a particle
param_picked = .particle_pick(param_previous_step, tab_weight)
# move it
param_moved = .move_particle(as.numeric(param_picked), 2 * cov.wt(as.matrix(as.matrix(param_previous_step)),
as.vector(tab_weight))$cov) # only variable parameters are moved, computation of a WEIGHTED variance
test = .is_included(param_moved, prior)
}
if (counter == max_pick) {
stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
}
}
param = param_previous_step[1, ]
param = param_moved
if (use_seed) {
param = c((seed_count + i), param)
}
simul_summarystat = model(param)
tab_simul_summarystat = rbind(tab_simul_summarystat, simul_summarystat)
if (use_seed) {
tab_param = rbind(tab_param, param[2:(l + 1)])
} else {
tab_param = rbind(tab_param, param)
}
# for progressbar message and time evaluation
if (progress_bar) {
duration = difftime(Sys.time(), startb, units = "secs")
text = ""
if (i == nb_simul) {
text = paste("Completed in", format(.POSIXct(duration, tz = "GMT"),
"%H:%M:%S"), " ")
} else {
text = paste("Time elapsed:", format(.POSIXct(duration, tz = "GMT"),
"%H:%M:%S"), "Estimated time remaining:", format(.POSIXct(duration/i *
(nb_simul - i), tz = "GMT"), "%H:%M:%S"))
}
.updateProgressBar(pb, i/nb_simul, text)
}
}
if (progress_bar) {
close(pb)
}
list(cbind(tab_param, tab_simul_summarystat), nb_simul/k_acc)
}
## sequential algorithm of Lenormand et al. 2012
.ABC_Lenormand <- function(model, prior, prior_test, nb_simul, summary_stat_target,
use_seed, verbose, alpha = 0.5, p_acc_min = 0.05, dist_weights=NULL,
seed_count = 0, inside_prior = TRUE, progress_bar = FALSE, store = FALSE, max_pick=10000) {
## checking errors in the inputs
if (!is.vector(alpha))
stop("'alpha' has to be a number.")
if (length(alpha) > 1)
stop("'alpha' has to be a number.")
if (alpha <= 0)
stop("'alpha' has to be between 0 and 1.")
if (alpha >= 1)
stop("'alpha' has to be between 0 and 1.")
if (!is.vector(p_acc_min))
stop("'p_acc_min' has to be a number.")
if (length(p_acc_min) > 1)
stop("'p_acc_min' has to be a number.")
if (p_acc_min <= 0)
stop("'p_acc_min' has to be between 0 and 1.")
if (p_acc_min >= 1)
stop("'p_acc_min' has to be between 0 and 1.")
if (!is.vector(seed_count))
stop("'seed_count' has to be a number.")
if (length(seed_count) > 1)
stop("'seed_count' has to be a number.")
if (seed_count < 0)
stop("'seed_count' has to be a positive number.")
seed_count = floor(seed_count)
if (!is.logical(inside_prior))
stop("'inside_prior' has to be boolean.")
if (!is.logical(progress_bar))
stop("'progress_bar' has to be boolean.")
start = Sys.time()
if (progress_bar) {
print(" ------ Lenormand et al. (2012)'s algorithm ------")
}
if (!store) {
seed_count_ini = seed_count
nparam = length(prior)
nstat = length(summary_stat_target)
if (!.all_unif(prior)) {
stop("Prior distributions must be uniform to use the Lenormand et al. (2012)'s algorithm.")
}
n_alpha = ceiling(nb_simul * alpha)
## step 1 ABC rejection step with LHS
tab_ini = .ABC_rejection_lhs(model, prior, prior_test, nb_simul, use_seed,
seed_count)
# initially, weights are equal
tab_weight = array(1, n_alpha)
if (verbose == TRUE) {
write.table(as.matrix(cbind(tab_weight, tab_ini)), file = "model_step1",
row.names = F, col.names = F, quote = F)
}
seed_count = seed_count + nb_simul
# determination of the normalization constants in each dimension associated to
# each summary statistic, this normalization will not change during all the
# algorithm
sd_simul = sapply(as.data.frame(tab_ini[, (nparam + 1):(nparam + nstat)]),
sd, na.rm = TRUE)
# selection of the alpha quantile closest simulations
simul_below_tol = NULL
simul_below_tol = rbind(simul_below_tol, .selec_simul_alpha(summary_stat_target,
as.matrix(as.matrix(tab_ini)[, 1:nparam]), as.matrix(as.matrix(tab_ini)[,
(nparam + 1):(nparam + nstat)]), sd_simul, alpha, dist_weights=dist_weights))
simul_below_tol = simul_below_tol[1:n_alpha, ] # to be sure that there are not two or more simulations at a distance equal to the tolerance determined by the quantile
tab_dist = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
tol_next = max(tab_dist)
intermediary_steps = list(NULL)
if (verbose == TRUE) {
write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = "output_step1",
row.names = F, col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1",
row.names = F, col.names = F, quote = F)
write.table(as.numeric(tol_next), file = "tolerance_step1", row.names = F,
col.names = F, quote = F)
intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count -
seed_count_ini), tol_step = as.numeric(tol_next), posterior = as.matrix(cbind(tab_weight,
simul_below_tol)))
}
if (progress_bar) {
print("step 1 completed")
}
## following steps
p_acc = p_acc_min + 1
nb_simul_step = nb_simul - n_alpha
it = 1
while (p_acc > p_acc_min) {
it = it + 1
simul_below_tol2 = NULL
tab_inic = .ABC_launcher_not_uniformc(model, prior, as.matrix(as.matrix(simul_below_tol)[,
1:nparam]), tab_weight/sum(tab_weight), nb_simul_step, use_seed,
seed_count, inside_prior, progress_bar, max_pick)
tab_ini = as.matrix(tab_inic[[1]])
tab_ini = as.numeric(tab_ini)
dim(tab_ini) = c(nb_simul_step, (nparam + nstat))
seed_count = seed_count + nb_simul_step
if (!inside_prior) {
tab_weight2 = .compute_weightb(as.matrix(as.matrix(tab_ini[, 1:nparam])),
as.matrix(as.matrix(simul_below_tol[, 1:nparam])), tab_weight/sum(tab_weight),
prior)
} else {
tab_weight2 = tab_inic[[2]] * (.compute_weightb(as.matrix(as.matrix(tab_ini[,
1:nparam])), as.matrix(as.matrix(simul_below_tol[, 1:nparam])),
tab_weight/sum(tab_weight), prior))
}
if (verbose == TRUE) {
write.table(as.matrix(cbind(tab_weight2, tab_ini)), file = paste("model_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
}
simul_below_tol2 = rbind(as.matrix(simul_below_tol), as.matrix(tab_ini))
tab_weight = c(tab_weight, tab_weight2)
tab_dist2 = .compute_dist(summary_stat_target, as.matrix(as.matrix(tab_ini)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
p_acc = length(tab_dist2[tab_dist2 <= tol_next])/nb_simul_step
tab_dist = c(tab_dist, tab_dist2)
tol_next = sort(tab_dist)[n_alpha]
simul_below_tol2 = simul_below_tol2[tab_dist <= tol_next, ]
tab_weight = tab_weight[tab_dist <= tol_next]
tab_weight = tab_weight[1:n_alpha]
tab_dist = tab_dist[tab_dist <= tol_next]
odist = order(tab_dist, decreasing = FALSE)[1:n_alpha]
tab_dist_new = tab_dist
simul_below_tol = matrix(0, n_alpha, (nparam + nstat))
for (i1 in 1:n_alpha) {
tab_dist_new[i1] = tab_dist[odist[i1]]
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[odist[i1],
i2])
}
}
tab_dist = tab_dist_new[1:n_alpha]
if (verbose == TRUE) {
write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = paste("output_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
write.table(as.numeric(p_acc), file = paste("p_acc_step", it, sep = ""),
row.names = F, col.names = F, quote = F)
write.table(as.numeric(tol_next), file = paste("tolerance_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
intermediary_steps[[it]] = list(n_simul_tot = as.numeric(seed_count -
seed_count_ini), tol_step = as.numeric(tol_next), p_acc = as.numeric(p_acc),
posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
}
if (progress_bar) {
print(paste("step ", it, " completed - p_acc = ", p_acc, sep = ""))
}
}
final_res = NULL
if (verbose == TRUE) {
final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]),
stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam +
nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul),
epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
seed_count_ini), computime = as.numeric(difftime(Sys.time(), start,
units = "secs")), intermediary = intermediary_steps)
} else {
final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]),
stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam +
nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul),
epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
seed_count_ini), computime = as.numeric(difftime(Sys.time(), start,
units = "secs")))
}
} else {
seed_count_ini = seed_count
nparam = length(prior)
nstat = length(summary_stat_target)
if (!.all_unif(prior)) {
stop("Prior distributions must be uniform to use the Lenormand et al. (2012)'s algorithm.")
}
n_alpha = ceiling(nb_simul * alpha)
## step 1 ABC rejection step with LHS
tab_ini = .ABC_rejection_lhs(model, prior, prior_test, nb_simul, use_seed,
seed_count)
seed_count = seed_count + nb_simul
sd_simul = sapply(as.data.frame(tab_ini[, (nparam + 1):(nparam + nstat)]),
sd) # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
write.table(as.matrix(cbind(array(1, nb_simul), as.matrix(tab_ini))), file = "output_all",
row.names = F, col.names = F, quote = F)
# selection of the alpha quantile closest simulations
simul_below_tol = NULL
simul_below_tol = rbind(simul_below_tol, .selec_simul_alpha(summary_stat_target,
as.matrix(as.matrix(tab_ini)[, 1:nparam]), as.matrix(as.matrix(tab_ini)[,
(nparam + 1):(nparam + nstat)]), sd_simul, alpha, dist_weights=dist_weights))
simul_below_tol = simul_below_tol[1:n_alpha, ] # to be sure that there are not two or more simulations at a distance equal to the tolerance determined by the quantile
# initially, weights are equal
tab_weight = array(1, n_alpha)
tab_dist = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
tol_next = max(tab_dist)
intermediary_steps = list(NULL)
if (verbose == TRUE) {
write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = "output_step1",
row.names = F, col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1",
row.names = F, col.names = F, quote = F)
write.table(as.numeric(tol_next), file = "tolerance_step1", row.names = F,
col.names = F, quote = F)
intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count -
seed_count_ini), tol_step = as.numeric(tol_next), posterior = as.matrix(cbind(tab_weight,
simul_below_tol)))
}
if (progress_bar) {
print("step 1 completed")
}
## following steps
p_acc = p_acc_min + 1
nb_simul_step = nb_simul - n_alpha
it = 1
while (p_acc > p_acc_min) {
it = it + 1
simul_below_tol2 = NULL
tab_inic = .ABC_launcher_not_uniformc(model, prior, as.matrix(as.matrix(simul_below_tol)[,
1:nparam]), tab_weight/sum(tab_weight), nb_simul_step, use_seed,
seed_count, inside_prior, progress_bar)
tab_ini = as.matrix(tab_inic[[1]])
tab_ini = as.numeric(tab_ini)
dim(tab_ini) = c(nb_simul_step, (nparam + nstat))
seed_count = seed_count + nb_simul_step
if (!inside_prior) {
tab_weight2 = .compute_weightb(as.matrix(as.matrix(tab_ini[, 1:nparam])),
as.matrix(as.matrix(simul_below_tol[, 1:nparam])), tab_weight/sum(tab_weight),
prior)
} else {
tab_weight2 = tab_inic[[2]] * (.compute_weightb(as.matrix(as.matrix(tab_ini[,
1:nparam])), as.matrix(as.matrix(simul_below_tol[, 1:nparam])),
tab_weight/sum(tab_weight), prior))
}
simul_below_tol2 = rbind(as.matrix(simul_below_tol), as.matrix(tab_ini))
write.table(as.matrix(cbind(tab_weight2, as.matrix(tab_ini))), file = "output_all",
row.names = F, col.names = F, quote = F, append = T)
tab_weight = c(tab_weight, tab_weight2)
tab_dist2 = .compute_dist(summary_stat_target, as.matrix(as.matrix(tab_ini)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
p_acc = length(tab_dist2[tab_dist2 <= tol_next])/nb_simul_step
tab_dist = c(tab_dist, tab_dist2)
tol_next = sort(tab_dist)[n_alpha]
simul_below_tol2 = simul_below_tol2[tab_dist <= tol_next, ]
tab_weight = tab_weight[tab_dist <= tol_next]
tab_weight = tab_weight[1:n_alpha]
tab_dist = tab_dist[tab_dist <= tol_next]
tab_dist = tab_dist[1:n_alpha]
simul_below_tol = matrix(0, n_alpha, (nparam + nstat))
for (i1 in 1:n_alpha) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[i1, i2])
}
}
if (verbose == TRUE) {
write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = paste("output_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
write.table(as.numeric(p_acc), file = paste("p_acc_step", it, sep = ""),
row.names = F, col.names = F, quote = F)
write.table(as.numeric(tol_next), file = paste("tolerance_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
intermediary_steps[[it]] = list(n_simul_tot = as.numeric(seed_count -
seed_count_ini), tol_step = as.numeric(tol_next), p_acc = as.numeric(p_acc),
posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
}
if (progress_bar) {
print(paste("step ", it, " completed - p_acc = ", p_acc, sep = ""))
}
}
final_res = NULL
if (verbose == TRUE) {
final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]),
stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam +
nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul),
epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
seed_count_ini), computime = as.numeric(difftime(Sys.time(), start,
units = "secs")), intermediary = intermediary_steps)
} else {
final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]),
stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam +
nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul),
epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
seed_count_ini), computime = as.numeric(difftime(Sys.time(), start,
units = "secs")))
}
}
final_res
}
## distance from a point to the design points
.dist_compute_emulator <- function(x, design_pts) {
norm_design_pts = design_pts
norm_x = x
if (is.vector(design_pts)) {
norm_design_pts = design_pts/sd(design_pts)
norm_x = x/sd(design_pts)
dist = norm_design_pts - norm_x
} else {
nn = dim(design_pts)[2]
for (j in 1:nn) {
norm_design_pts[, j] = design_pts[, j]/sd(design_pts[, j])
norm_x[j] = x[j]/sd(design_pts[, j])
}
dist = apply(norm_design_pts, MARGIN = 1, function(d) {
sqrt(sum((d - norm_x)^2))
})
}
dist
}
.tricubic_weight <- function(dist_array, span) {
maxdist = sort(dist_array)[ceiling(span * length(dist_array))]
w = (1 - (dist_array/maxdist)^3)^3
w[w < 0] = 0
w/sum(w)
}
.predict_locreg_deg2 <- function(x, design_pts, design_stats, span) {
d = .dist_compute_emulator(x, design_pts)
w = .tricubic_weight(d, span)
if (!is.vector(design_pts) && dim(design_pts)[2] > 1) {
centered_pts = t(apply(design_pts, MARGIN = 1, function(d) {
d - x
}))
} else {
centered_pts = design_pts - x
}
if (is.vector(centered_pts)) {
reg_deg2 <- as.formula(paste("design_stats ~ (centered_pts)^2"))
} else {
nparam = dim(centered_pts)[2]
xnam = paste0("centered_pts[,", 1:nparam)
reg_deg2 <- as.formula(paste("design_stats ~ (", paste(xnam, collapse = "]+"),
"])^2"))
}
locreg = lm(reg_deg2, weights = w)
if (!is.vector(design_stats) && dim(design_stats)[2] > 1) {
mean_res = as.numeric(locreg$coefficients[1, ])
cov_res = cov.wt(locreg$residuals, wt = w)$cov
} else {
mean_res = as.numeric(locreg$coefficients[1])
cov_res = cov.wt(as.matrix(locreg$residuals), wt = w)$cov
}
list(mean = mean_res, covmat = cov_res)
}
.emulator_locreg_deg2 <- function(x, design_pts, design_stats, span) {
temp = .predict_locreg_deg2(x, design_pts, design_stats, span)
mvrnorm(n = 1, mu = temp$mean, Sigma = temp$covmat)
}
.ABC_sequential_emulation <- function(model, prior, prior_test, nb_simul, summary_stat_target,
use_seed, verbose, n_step_emulation = 9, emulator_span = 50, alpha = 0.5, p_acc_min = 0.05,
dist_weights=NULL, seed_count = 0, inside_prior = TRUE, progress_bar = FALSE) {
## checking errors in the inputs
if (!is.vector(alpha))
stop("'alpha' has to be a number.")
if (length(alpha) > 1)
stop("'alpha' has to be a number.")
if (alpha <= 0)
stop("'alpha' has to be between 0 and 1.")
if (alpha >= 1)
stop("'alpha' has to be between 0 and 1.")
if (!is.vector(p_acc_min))
stop("'p_acc_min' has to be a number.")
if (length(p_acc_min) > 1)
stop("'p_acc_min' has to be a number.")
if (p_acc_min <= 0)
stop("'p_acc_min' has to be between 0 and 1.")
if (p_acc_min >= 1)
stop("'p_acc_min' has to be between 0 and 1.")
if (!is.vector(seed_count))
stop("'seed_count' has to be a number.")
if (length(seed_count) > 1)
stop("'seed_count' has to be a number.")
if (seed_count < 0)
stop("'seed_count' has to be a positive number.")
seed_count = floor(seed_count)
if (!is.logical(inside_prior))
stop("'inside_prior' has to be boolean.")
if (!is.logical(progress_bar))
stop("'progress_bar' has to be boolean.")
start = Sys.time()
if (progress_bar) {
print(" ------ Jabot et al. (2015)'s algorithm ------")
}
nparam = length(prior)
nstat = length(summary_stat_target)
if (!.all_unif(prior)) {
stop("Prior distributions must be uniform to use the Jabot et al. (2012)'s algorithm.")
}
n_alpha = ceiling(nb_simul * alpha)
## step 1 ABC rejection step with LHS
tab_ini = .ABC_rejection_lhs(model, prior, prior_test, nb_simul, use_seed, seed_count)
seed_count = seed_count + nb_simul
# determination of the normalization constants in each dimension associated to
# each summary statistic, this normalization will not change during all the
# algorithm
sd_simul = sapply(as.data.frame(tab_ini[, (nparam + 1):(nparam + nstat)]), sd)
tab_weight_end = array(1, nb_simul)
print("design 1 done")
for (i_step_emulation in 1:n_step_emulation) {
## step 2 use of an emulator in a sequential ABC procedure ABC_emulator_xxx
## variables are globals and are removed at the end of the function
emulator_design_pts = tab_ini[, 1:nparam]
emulator_design_stats = tab_ini[, (nparam + 1):(nparam + nstat)]
# TODO put 50 as a parameter and add a feature for doing a cross validation
span = min(1, emulator_span/dim(tab_ini)[1])
tab_dist = .compute_dist(summary_stat_target, as.matrix(tab_ini[, (nparam +
1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
tol_max = sort(tab_dist)[nb_simul]
res_emulator = .ABC_sequential_emulator(model, emulator_design_pts, emulator_design_stats,
span, tab_ini[tab_dist <= tol_max,
], tab_weight_end[tab_dist <= tol_max], nparam, nstat, sd_simul,
prior, prior_test, nb_simul, summary_stat_target, use_seed, verbose,
alpha, p_acc_min, dist_weights=dist_weights, seed_count, inside_prior, progress_bar)
print("emulation done")
## step 3 draw of new particles according to the result of the emulator-based fit
new_particles = .ABC_sequential_emulation_follow(model, res_emulator$weights,
res_emulator$simul, nparam, nstat, prior, prior_test, nb_simul, summary_stat_target,
use_seed, verbose, alpha, p_acc_min, seed_count, inside_prior, progress_bar)
tab_ini = rbind(tab_ini, new_particles$simul)
tab_weight_end = c(tab_weight_end, new_particles$weights)
print("sim new particles done")
}
final_res = list(param = as.matrix(as.matrix(tab_ini)[, 1:nparam]), stats = as.matrix(as.matrix(tab_ini)[,
(nparam + 1):(nparam + nstat)]), weights = tab_weight_end, stats_normalization = as.numeric(sd_simul),
computime = as.numeric(difftime(Sys.time(), start, units = "secs")))
final_res
}
.ABC_sequential_emulation_follow <- function(model, tab_weight, simul_below_tol,
nparam, nstat, prior, prior_test, nb_simul, summary_stat_target, use_seed, verbose,
alpha, p_acc_min, seed_count, inside_prior, progress_bar) {
# generate new particles with the original model
tab_inic = .ABC_launcher_not_uniformc(model, prior, as.matrix(as.matrix(simul_below_tol)[,
1:nparam]), tab_weight/sum(tab_weight), nb_simul, use_seed, seed_count, inside_prior,
progress_bar)
tab_ini = as.matrix(tab_inic[[1]])
tab_ini = as.numeric(tab_ini)
dim(tab_ini) = c(nb_simul, (nparam + nstat))
seed_count = seed_count + nb_simul
if (!inside_prior) {
tab_weight2 = .compute_weightb(as.matrix(as.matrix(tab_ini[, 1:nparam])),
as.matrix(as.matrix(simul_below_tol[, 1:nparam])), tab_weight/sum(tab_weight),
prior)
} else {
tab_weight2 = tab_inic[[2]] * (.compute_weightb(as.matrix(as.matrix(tab_ini[,
1:nparam])), as.matrix(as.matrix(simul_below_tol[, 1:nparam])), tab_weight/sum(tab_weight),
prior))
}
final_res = list(simul = as.matrix(as.matrix(tab_ini)), weights = tab_weight2)
final_res
}
## step 2 use of an emulator in a sequential ABC procedure
.ABC_sequential_emulator <- function(model, emulator_design_pts, emulator_design_stats, emulator_span, tab_ini1, tab_weight1, nparam, nstat,
sd_simul, prior, prior_test, nb_simul, summary_stat_target, use_seed,
verbose, alpha, p_acc_min, dist_weights, seed_count, inside_prior, progress_bar) {
n_alpha = ceiling(nb_simul * alpha)
design_pts = tab_ini1[, 1:nparam]
design_stats = tab_ini1[, (nparam + 1):(nparam + nstat)]
# initialize with the design particles
simul_below_tol = tab_ini1
tab_weight = tab_weight1
tab_dist = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
tol_next = max(tab_dist)
intermediary_steps = list(NULL)
# following steps
p_acc = p_acc_min + 1
nb_simul_step = nb_simul - n_alpha
it = 1
while (p_acc > p_acc_min) {
it = it + 1
simul_below_tol2 = NULL
if (use_seed) {
model_emulator = function(parameters) {
.emulator_locreg_deg2(parameters[2:length(parameters)], emulator_design_pts, emulator_design_stats, emulator_span)
}
} else {
model_emulator = function(parameters) {
.emulator_locreg_deg2(parameters, emulator_design_pts, emulator_design_stats, emulator_span)
}
}
tab_inic = .ABC_launcher_not_uniformc(model_emulator, prior, as.matrix(as.matrix(simul_below_tol)[,
1:nparam]), tab_weight/sum(tab_weight), nb_simul_step, use_seed, seed_count,
inside_prior, progress_bar)
tab_ini = as.matrix(tab_inic[[1]])
tab_ini = as.numeric(tab_ini)
dim(tab_ini) = c(nb_simul_step, (nparam + nstat))
seed_count = seed_count + nb_simul_step
if (!inside_prior) {
tab_weight2 = .compute_weightb(as.matrix(as.matrix(tab_ini[, 1:nparam])),
as.matrix(as.matrix(simul_below_tol[, 1:nparam])), tab_weight/sum(tab_weight),
prior)
} else {
tab_weight2 = tab_inic[[2]] * (.compute_weightb(as.matrix(as.matrix(tab_ini[,
1:nparam])), as.matrix(as.matrix(simul_below_tol[, 1:nparam])), tab_weight/sum(tab_weight),
prior))
}
simul_below_tol2 = rbind(as.matrix(simul_below_tol), as.matrix(tab_ini))
tab_weight = c(tab_weight, tab_weight2)
tab_dist2 = .compute_dist(summary_stat_target, as.matrix(as.matrix(tab_ini)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
p_acc = length(tab_dist2[tab_dist2 <= tol_next])/nb_simul_step
tab_dist = c(tab_dist, tab_dist2)
tol_next = sort(tab_dist)[n_alpha]
simul_below_tol2 = simul_below_tol2[tab_dist <= tol_next, ]
tab_weight = tab_weight[tab_dist <= tol_next]
tab_weight = tab_weight[1:n_alpha]
tab_dist = tab_dist[tab_dist <= tol_next]
tab_dist = tab_dist[1:n_alpha]
simul_below_tol = matrix(0, n_alpha, (nparam + nstat))
for (i1 in 1:n_alpha) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[i1, i2])
}
}
}
final_res = list(simul = as.matrix(as.matrix(simul_below_tol)), weights = tab_weight)
final_res
}
## FUNCTION ABC_sequential: Sequential ABC methods (Beaumont et al. 2009, Drovandi
## & Pettitt 2011, Del Moral et al. 2011, Lenormand et al. 2012, Jabot et al.
## 2015)
.ABC_sequential <- function(method, model, prior, prior_test, nb_simul, summary_stat_target,
use_seed, verbose, dist_weights=NULL, ...) {
options(scipen = 50)
## general function regrouping the different sequential algorithms [Beaumont et
## al., 2009] Beaumont, M. A., Cornuet, J., Marin, J., and Robert, C. P. (2009).
## Adaptive approximate Bayesian computation. Biometrika,96(4):983-990. [Drovandi
## & Pettitt 2011] Drovandi, C. C. and Pettitt, A. N. (2011). Estimation of
## parameters for macroparasite population evolution using approximate Bayesian
## computation. Biometrics, 67(1):225-233. [Del Moral et al. 2012] Del Moral, P.,
## Doucet, A., and Jasra, A. (2012). An adaptive sequential Monte Carlo method for
## approximate Bayesian computation, Statistics and Computing., 22(5):1009-1020.
## [Lenormand et al. 2012] Lenormand, M., Jabot, F., Deffuant G. (2012). Adaptive
## approximate Bayesian computation for complex models, submitted to Comput. Stat.
## [Jabot et al. 2015] Jabot, F., Lagarrigues G., Courbaud B., Dumoulin N. (2015).
## A comparison of emulation methods for Approximate Bayesian Computation. To be
## published. )
return(switch(EXPR = method, Beaumont = .ABC_PMC(model, prior, prior_test, nb_simul,
summary_stat_target, use_seed, verbose, dist_weights=dist_weights, ...), Drovandi = .ABC_Drovandi(model,
prior, prior_test, nb_simul, summary_stat_target, use_seed, verbose, dist_weights=dist_weights, ...),
Delmoral = .ABC_Delmoral(model, prior, prior_test, nb_simul, summary_stat_target,
use_seed, verbose, dist_weights=dist_weights, ...), Lenormand = .ABC_Lenormand(model, prior, prior_test,
nb_simul, summary_stat_target, use_seed, dist_weights=dist_weights, verbose, ...), Emulation = .ABC_sequential_emulation(model,
prior, prior_test, nb_simul, summary_stat_target, use_seed, verbose, dist_weights=dist_weights,
...)))
options(scipen = 0)
}
## function to move a particle with a unidimensional uniform jump
.move_particle_uni_uniform <- function(param_picked, sd_array, prior, max_pick=10000) {
test = FALSE
res = param_picked
counter = 0
while ((!test) && (counter < max_pick)) {
counter = counter + 1
for (i in 1:length(param_picked)) {
res[i] = runif(n = 1, min = param_picked[i] - sd_array[i], max = param_picked[i] +
sd_array[i])
}
test = .is_included(res, prior)
}
if (counter == max_pick) {
stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
}
res
}
.make_proposal_range <- function(prior) {
res = NULL
sample_range = array(0, 100)
for (i in 1:length(prior)) {
for (j in 1:100) {
sample_range[j] = prior[[i]]$sampling()
}
res[i] = sd(sample_range)/10
}
res
}
## ABC-MCMC algorithm of Marjoram et al. 2003
.ABC_MCMC <- function(model, prior, prior_test, n_obs, n_between_sampling, summary_stat_target,
use_seed, verbose, dist_max = 0, tab_normalization = summary_stat_target, proposal_range = vector(mode = "numeric",
length = length(prior)), dist_weights=NULL, seed_count = 0, progress_bar = FALSE, max_pick=10000) {
## checking errors in the inputs
if (!is.vector(dist_max))
stop("'dist_max' has to be a number.")
if (length(dist_max) > 1)
stop("'dist_max' has to be a number.")
if (dist_max < 0)
stop("'dist_max' has to be positive.")
if (!is.vector(tab_normalization))
stop("'tab_normalization' has to be a vector.")
if (length(tab_normalization) != length(summary_stat_target))
stop("'tab_normalization' must have the same length as 'summary_stat_target'.")
if (!is.vector(proposal_range))
stop("'proposal_range' has to be a vector.")
if (length(proposal_range) != length(prior))
stop("'proposal_range' must have the same length as the number of model parameters.")
if (!is.vector(seed_count))
stop("'seed_count' has to be a number.")
if (length(seed_count) > 1)
stop("'seed_count' has to be a number.")
if (seed_count < 0)
stop("'seed_count' has to be a positive number.")
seed_count = floor(seed_count)
if (!is.logical(progress_bar))
stop("'progress_bar' has to be boolean.")
start = Sys.time()
if (progress_bar) {
print(" ------ Marjoram et al. (2003)'s algorithm ------")
}
if (sum(abs(tab_normalization - summary_stat_target)) == 0) {
print("Warning: summary statistics are normalized by default through a division by the target summary statistics - it may not be appropriate to your case.")
print("Consider providing normalization constants for each summary statistics in the option 'tab_normalization' or using the method 'Marjoram' which automatically determines these constants.")
}
for (ii in 1:length(tab_normalization)) {
if (tab_normalization[ii] == 0) {
tab_normalization[ii] = 1
}
}
if (sum(proposal_range) == 0) {
proposal_range = .make_proposal_range(prior)
print("Warning: default values for proposal distributions are used - they may not be appropriate to your case.")
print("Consider providing proposal range constants for each parameter in the option 'proposal_range' or using the method 'Marjoram' which automatically determines these constants.")
}
seed_count_ini = seed_count
nparam = length(prior)
nstat = length(summary_stat_target)
tab_simul_summary_stat = NULL
tab_param = NULL
# initial draw of a particle below the tolerance dist_max
test = FALSE
dist_simul = NULL
if (dist_max == 0) {
param = .sample_prior(prior, prior_test)
if (use_seed) {
param = c((seed_count + 1), param)
}
simul_summary_stat = model(param)
dist_simul = .compute_dist(summary_stat_target, as.numeric(simul_summary_stat),
tab_normalization, dist_weights=dist_weights)
dist_max = dist_simul/2
seed_count = seed_count + 1
print("Warning: a default value for the tolerance has been computed - it may not be appropriate to your case.")
print("Consider providing a tolerance value in the option 'dist_max' or using the method 'Marjoram' which automatically determines this value.")
}
while (!test) {
param = .sample_prior(prior, prior_test)
if (use_seed) {
param = c((seed_count + 1), param)
}
simul_summary_stat = model(param)
dist_simul = .compute_dist(summary_stat_target, as.numeric(simul_summary_stat),
tab_normalization, dist_weights=dist_weights)
if (dist_simul < dist_max) {
test = TRUE
}
seed_count = seed_count + 1
}
tab_simul_summary_stat = rbind(tab_simul_summary_stat, simul_summary_stat)
tab_param = rbind(tab_param, param)
if (use_seed) {
tab_param = tab_param[, 2:(nparam + 1)]
}
tab_simul_ini = as.numeric(simul_summary_stat)
param_ini = tab_param
dist_ini = dist_simul
if (verbose == TRUE) {
write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1",
row.names = F, col.names = F, quote = F)
write.table(NULL, file = "output_mcmc", row.names = F, col.names = F, quote = F)
}
if (progress_bar) {
print("initial draw performed ")
}
# chain run progress bar
if (progress_bar) {
pb <- .progressBar(width = 50)
duration = 0
}
tab_param = param_ini
tab_simul_summary_stat = tab_simul_ini
tab_dist = as.numeric(dist_ini)
if (verbose == TRUE) {
intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
}
for (is in 2:n_obs) {
for (i in 1:n_between_sampling) {
param = .move_particle_uni_uniform(as.numeric(param_ini), proposal_range,
prior, max_pick)
if (use_seed) {
param = c(seed_count, param)
}
simul_summary_stat = model(param)
if (use_seed) {
param = param[2:(nparam + 1)]
}
dist_simul = .compute_dist(summary_stat_target, as.numeric(simul_summary_stat),
tab_normalization, dist_weights=dist_weights)
if (dist_simul < dist_max) {
param_ini = param
tab_simul_ini = as.numeric(simul_summary_stat)
dist_ini = dist_simul
}
seed_count = seed_count + 1
}
tab_simul_summary_stat = rbind(tab_simul_summary_stat, tab_simul_ini)
tab_param = rbind(tab_param, as.numeric(param_ini))
tab_dist = rbind(tab_dist, as.numeric(dist_ini))
if (verbose == TRUE) {
intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
}
if (progress_bar) {
# for progressbar message and time evaluation
duration = difftime(Sys.time(), start, units = "secs")
text = ""
if (is == n_obs) {
text = paste("Completed in", format(.POSIXct(duration, tz = "GMT"),
"%H:%M:%S"), " ")
} else {
text = paste("Time elapsed:", format(.POSIXct(duration, tz = "GMT"),
"%H:%M:%S"), "Estimated time remaining:", format(.POSIXct(duration/is *
(n_obs - is), tz = "GMT"), "%H:%M:%S"))
}
.updateProgressBar(pb, is/n_obs, text)
}
}
if (progress_bar) {
close(pb)
}
tab_param2 = matrix(0, dim(tab_param)[1], dim(tab_param)[2])
for (i in 1:dim(tab_param)[1]) {
for (j in 1:dim(tab_param)[2]) {
tab_param2[i, j] = tab_param[i, j]
}
}
tab_simul_summary_stat2 = matrix(0, dim(tab_simul_summary_stat)[1], dim(tab_simul_summary_stat)[2])
for (i in 1:dim(tab_simul_summary_stat)[1]) {
for (j in 1:dim(tab_simul_summary_stat)[2]) {
tab_simul_summary_stat2[i, j] = tab_simul_summary_stat[i, j]
}
}
tab_dist2 = array(0, length(tab_dist))
for (i in 1:length(tab_dist)) {
tab_dist2[i] = tab_dist[i]
}
list(param = as.matrix(tab_param2), stats = as.matrix(tab_simul_summary_stat2),
dist = tab_dist2, stats_normalization = as.numeric(tab_normalization), epsilon = max(tab_dist),
nsim = (seed_count - seed_count_ini), n_between_sampling = n_between_sampling,
computime = as.numeric(difftime(Sys.time(), start, units = "secs")))
}
## ABC-MCMC2 algorithm of Marjoram et al. 2003 with automatic determination of the
## tolerance and proposal range following Wegmann et al. 2009
.ABC_MCMC2 <- function(model, prior, prior_test, n_obs, n_between_sampling, summary_stat_target,
use_seed, verbose, n_calibration = 10000, tolerance_quantile = 0.01, proposal_phi = 1,
dist_weights=NULL, seed_count = 0, progress_bar = FALSE, max_pick=10000) {
## checking errors in the inputs
if (!is.vector(n_calibration))
stop("'n_calibration' has to be a number.")
if (length(n_calibration) > 1)
stop("'n_calibration' has to be a number.")
if (n_calibration < 1)
stop("'n_calibration' has to be positive.")
n_calibration = floor(n_calibration)
if (!is.vector(tolerance_quantile))
stop("'tolerance_quantile' has to be a number.")
if (length(tolerance_quantile) > 1)
stop("'tolerance_quantile' has to be a number.")
if (tolerance_quantile <= 0)
stop("'tolerance_quantile' has to be between 0 and 1.")
if (tolerance_quantile >= 1)
stop("'tolerance_quantile' has to be between 0 and 1.")
if (!is.vector(proposal_phi))
stop("'proposal_phi' has to be a number.")
if (length(proposal_phi) > 1)
stop("'proposal_phi' has to be a number.")
if (proposal_phi <= 0)
stop("'proposal_phi' has to be positive.")
if (!is.vector(seed_count))
stop("'seed_count' has to be a number.")
if (length(seed_count) > 1)
stop("'seed_count' has to be a number.")
if (seed_count < 0)
stop("'seed_count' has to be a positive number.")
seed_count = floor(seed_count)
if (!is.logical(progress_bar))
stop("'progress_bar' has to be boolean.")
start = Sys.time()
if (progress_bar) {
print(" ------ Marjoram et al. (2003)'s algorithm with modifications drawn from Wegmann et al. (2009) related to automatization ------")
}
seed_count_ini = seed_count
nparam = length(prior)
nstat = length(summary_stat_target)
tab_param = matrix(NA, n_calibration, ifelse(use_seed, nparam + 1, nparam))
tab_simul_summary_stat = matrix(NA, n_calibration, nstat)
# initial draw of a particle
for (i in 1:(n_calibration)) {
param = .sample_prior(prior, prior_test)
if (use_seed) {
param = c((seed_count + i), param)
}
simul_summary_stat = model(param)
tab_simul_summary_stat[i, ] = as.numeric(simul_summary_stat)
tab_param[i, ] = param
}
seed_count = seed_count + n_calibration
if (use_seed) {
tab_param = tab_param[, 2:(nparam + 1)]
}
sd_simul = array(0, nstat)
for (i in 1:nstat) {
sd_simul[i] = sd(tab_simul_summary_stat[, i])
}
simuldist = .compute_dist(summary_stat_target, tab_simul_summary_stat, sd_simul, dist_weights=dist_weights)
ord_sim = order(simuldist, decreasing = F)
nmax = ceiling(tolerance_quantile * n_calibration)
dist_max = simuldist[(ord_sim[nmax])]
tab_param = tab_param[(ord_sim[1:nmax]), ]
proposal_range = vector(mode = "numeric", length = nparam)
for (i in 1:nparam) {
proposal_range[i] = sd(as.matrix(tab_param)[, i]) * proposal_phi/2
}
n_ini = sample(nmax, 1)
tab_simul_ini = as.numeric(tab_simul_summary_stat[(ord_sim[n_ini]), ])
dist_ini = simuldist[(ord_sim[n_ini])]
param_ini = as.matrix(tab_param)[n_ini, ]
if (verbose == TRUE) {
write.table((seed_count - seed_count_ini), file = "n_simul_tot_step1", row.names = F,
col.names = F, quote = F)
write.table(NULL, file = "output_mcmc", row.names = F, col.names = F, quote = F)
}
if (progress_bar) {
print("initial calibration performed ")
}
# chain run progress bar
startb = Sys.time()
if (progress_bar) {
pb <- .progressBar(width = 50)
duration = 0
}
tab_param = matrix(NA, n_obs, length(param_ini))
tab_simul_summary_stat = matrix(NA, n_obs, nstat)
tab_dist = numeric(n_obs)
tab_param[1, ] = as.numeric(param_ini)
tab_simul_summary_stat[1, ] = as.numeric(tab_simul_ini)
tab_dist = as.numeric(dist_ini)
seed_count = seed_count + 1
if (verbose == TRUE) {
intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
}
for (is in 2:n_obs) {
for (i in 1:n_between_sampling) {
param = .move_particle_uni_uniform(as.numeric(param_ini), proposal_range,
prior, max_pick)
if (use_seed) {
param = c(seed_count, param)
}
simul_summary_stat = model(param)
if (use_seed) {
param = param[2:(nparam + 1)]
}
dist_simul = .compute_dist(summary_stat_target, as.numeric(simul_summary_stat),
sd_simul, dist_weights=dist_weights)
if (dist_simul < dist_max) {
param_ini = param
tab_simul_ini = as.numeric(simul_summary_stat)
dist_ini = dist_simul
}
seed_count = seed_count + 1
}
tab_simul_summary_stat[is, ] = as.numeric(tab_simul_ini)
tab_param[is, ] = as.numeric(param_ini)
tab_dist[is] = as.numeric(dist_ini)
if (verbose == TRUE) {
intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
}
if (progress_bar) {
# for progressbar message and time evaluation
duration = difftime(Sys.time(), startb, units = "secs")
text = ""
if (is == n_obs) {
text = paste("Completed in", format(.POSIXct(duration, tz = "GMT"),
"%H:%M:%S"), " ")
} else {
text = paste("Time elapsed:", format(.POSIXct(duration, tz = "GMT"),
"%H:%M:%S"), "Estimated time remaining:", format(.POSIXct(duration/is *
(n_obs - is), tz = "GMT"), "%H:%M:%S"))
}
.updateProgressBar(pb, is/n_obs, text)
}
}
if (progress_bar) {
close(pb)
}
tab_param2 = matrix(0, dim(tab_param)[1], dim(tab_param)[2])
for (i in 1:dim(tab_param)[1]) {
for (j in 1:dim(tab_param)[2]) {
tab_param2[i, j] = tab_param[i, j]
}
}
tab_simul_summary_stat2 = matrix(0, dim(tab_simul_summary_stat)[1], dim(tab_simul_summary_stat)[2])
for (i in 1:dim(tab_simul_summary_stat)[1]) {
for (j in 1:dim(tab_simul_summary_stat)[2]) {
tab_simul_summary_stat2[i, j] = tab_simul_summary_stat[i, j]
}
}
tab_dist2 = array(0, length(tab_dist))
for (i in 1:length(tab_dist)) {
tab_dist2[i] = tab_dist[i]
}
list(param = as.matrix(tab_param2), stats = as.matrix(tab_simul_summary_stat2),
dist = tab_dist2, stats_normalization = as.numeric(sd_simul), epsilon = max(tab_dist),
nsim = (seed_count - seed_count_ini), n_between_sampling = n_between_sampling,
computime = as.numeric(difftime(Sys.time(), start, units = "secs")))
}
## ABC-MCMC3 algorithm of Wegmann et al. 2009 - the PLS step is drawn from the
## manual of ABCtoolbox (figure 9) - NB: for consistency with ABCtoolbox, AM11-12
## are not implemented in the algorithm
.ABC_MCMC3 <- function(model, prior, prior_test, n_obs, n_between_sampling, summary_stat_target,
use_seed, verbose, n_calibration = 10000, tolerance_quantile = 0.01, proposal_phi = 1,
numcomp = 0, dist_weights=NULL, seed_count = 0, progress_bar = FALSE, max_pick=10000) {
## checking errors in the inputs
if (!is.vector(n_calibration))
stop("'n_calibration' has to be a number.")
if (length(n_calibration) > 1)
stop("'n_calibration' has to be a number.")
if (n_calibration < 1)
stop("'n_calibration' has to be positive.")
n_calibration = floor(n_calibration)
if (!is.vector(tolerance_quantile))
stop("'tolerance_quantile' has to be a number.")
if (length(tolerance_quantile) > 1)
stop("'tolerance_quantile' has to be a number.")
if (tolerance_quantile <= 0)
stop("'tolerance_quantile' has to be between 0 and 1.")
if (tolerance_quantile >= 1)
stop("'tolerance_quantile' has to be between 0 and 1.")
if (!is.vector(proposal_phi))
stop("'proposal_phi' has to be a number.")
if (length(proposal_phi) > 1)
stop("'proposal_phi' has to be a number.")
if (proposal_phi <= 0)
stop("'proposal_phi' has to be positive.")
if (!is.vector(numcomp))
stop("'numcomp' has to be a number.")
if (length(numcomp) > 1)
stop("'numcomp' has to be a number.")
if (numcomp < 0)
stop("'numcomp' has to be positive.")
if (numcomp > length(summary_stat_target))
stop("'numcomp' has to smaller or equal to the number of summary statistics.")
numcomp = floor(numcomp)
if (!is.vector(seed_count))
stop("'seed_count' has to be a number.")
if (length(seed_count) > 1)
stop("'seed_count' has to be a number.")
if (seed_count < 0)
stop("'seed_count' has to be a positive number.")
seed_count = floor(seed_count)
if (!is.logical(progress_bar))
stop("'progress_bar' has to be boolean.")
# library(pls) library(MASS)
start = Sys.time()
if (progress_bar) {
print(" ------ Wegmann et al. (2009)'s algorithm ------")
}
## AM1
seed_count_ini = seed_count
nparam = length(prior)
nstat = length(summary_stat_target)
if (nstat <= 1) {
stop("A single summary statistic is used, use the method 'Marjoram' instead")
}
if (numcomp == 0) {
numcomp = nstat
}
tab_simul_summary_stat = NULL
tab_param = NULL
if (length(prior) <= 1) {
stop("A single parameter is varying, use the method 'Marjoram' instead")
}
# initial draw of a particle
for (i in 1:(n_calibration)) {
param = .sample_prior(prior, prior_test)
if (use_seed) {
param = c((seed_count + i), param)
}
simul_summary_stat = model(param)
tab_simul_summary_stat = rbind(tab_simul_summary_stat, simul_summary_stat)
tab_param = rbind(tab_param, param)
}
if (use_seed) {
tab_param = tab_param[, 2:(nparam + 1)]
}
seed_count = seed_count + n_calibration
if (verbose) {
write.table((seed_count - seed_count_ini), file = "n_simul_tot_step1", row.names = F,
col.names = F, quote = F)
write.table(NULL, file = "output_mcmc", row.names = F, col.names = F, quote = F)
}
## AM2: PLS step print('AM2 ') standardize the params
sparam = as.matrix(tab_param)
ls = dim(sparam)[2]
if (is.null(ls)) {
ls = 1
}
for (i in 1:ls) {
sparam[, i] = (sparam[, i] - mean(sparam[, i]))/sd(sparam[, i])
}
# force stat in [1,2]
myMax <- c()
myMin <- c()
lambda <- c()
myGM <- c()
stat = tab_simul_summary_stat
# print('stat 1 ') print(stat)
summary_stat_targ = summary_stat_target
for (i in 1:nstat) {
myMax <- c(myMax, max(stat[, i]))
myMin <- c(myMin, min(stat[, i]))
stat[, i] = 1 + (stat[, i] - myMin[i])/(myMax[i] - myMin[i])
summary_stat_targ[i] = 1 + (summary_stat_targ[i] - myMin[i])/(myMax[i] -
myMin[i])
}
# print('stat 2 ') print(stat) transform statistics via boxcox
dmat = matrix(0, n_calibration, (ls + 1))
for (i in 1:nstat) {
d = cbind(as.vector(as.numeric(stat[, i])), as.matrix(sparam))
for (i1 in 1:n_calibration) {
for (i2 in 1:(ls + 1)) {
dmat[i1, i2] = as.numeric(d[i1, i2])
}
}
save(dmat, file = "dmat.RData")
load("dmat.RData", .GlobalEnv)
file.remove("dmat.RData")
mylm <- lm(as.formula(as.data.frame(dmat)), data = as.data.frame(dmat))
# mylm<-lm(as.formula(as.data.frame(dmat))) mylm<-lm(stat[,i]~as.matrix(sparam))
myboxcox <- boxcox(mylm, lambda = seq(-20, 100, 1/10), interp = T, eps = 1/50,
plotit = FALSE)
lambda <- c(lambda, myboxcox$x[myboxcox$y == max(myboxcox$y)])
myGM <- c(myGM, exp(mean(log(stat[, i]))))
}
# standardize the BC-stat
myBCMeans <- c()
myBCSDs <- c()
for (i in 1:nstat) {
stat[, i] <- ((stat[, i]^lambda[i]) - 1)/(lambda[i] * (myGM[i]^(lambda[i] -
1)))
summary_stat_targ[i] <- ((summary_stat_targ[i]^lambda[i]) - 1)/(lambda[i] *
(myGM[i]^(lambda[i] - 1)))
myBCSDs <- c(myBCSDs, sd(stat[, i]))
myBCMeans <- c(myBCMeans, mean(stat[, i]))
stat[, i] <- (stat[, i] - myBCMeans[i])/myBCSDs[i]
summary_stat_targ[i] <- (summary_stat_targ[i] - myBCMeans[i])/myBCSDs[i]
}
# perform pls
myPlsr <- plsr(as.matrix(sparam) ~ as.matrix(stat), scale = F, ncomp = numcomp,
validation = "LOO")
pls_transformation = matrix(0, numcomp, nstat)
for (i in 1:numcomp) {
pls_transformation[i, ] = as.numeric(myPlsr$loadings[, i])
}
## AM3 print('AM3 ')
summary_stat_targ = t(pls_transformation %*% as.vector(summary_stat_targ))
stat_pls = t(pls_transformation %*% t(stat))
simuldist = .compute_dist(summary_stat_targ, stat_pls, rep(1, numcomp), dist_weights=dist_weights)
## AM4 print('AM4 ')
ord_sim = order(simuldist, decreasing = F)
nmax = ceiling(tolerance_quantile * n_calibration)
dist_max = simuldist[(ord_sim[nmax])]
tab_param = tab_param[(ord_sim[1:nmax]), ]
proposal_range = vector(mode = "numeric", length = nparam)
for (i in 1:nparam) {
proposal_range[i] = sd(tab_param[, i]) * proposal_phi/2
}
if (progress_bar) {
print("initial calibration performed ")
}
## AM5: chain run progress bar
startb = Sys.time()
if (progress_bar) {
pb <- .progressBar(width = 50)
duration = 0
}
# print('AM5 ')
n_ini = sample(nmax, 1)
tab_simul_ini = as.numeric(tab_simul_summary_stat[(ord_sim[n_ini]), ])
param_ini = tab_param[n_ini, ]
tab_param = param_ini
tab_simul_summary_stat = tab_simul_ini
dist_ini = simuldist[(ord_sim[n_ini])]
tab_dist = as.numeric(dist_ini)
seed_count = seed_count + 1
if (verbose == TRUE) {
intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
}
for (is in 2:n_obs) {
for (i in 1:n_between_sampling) {
## AM6 print('AM6 ')
param = .move_particle_uni_uniform(as.numeric(param_ini), proposal_range,
prior, max_pick)
if (use_seed) {
param = c(seed_count, param)
}
## AM7 print('AM7 ')
simul_summary_stat = model(param)
simul_summary_stat_output = simul_summary_stat
if (use_seed) {
param = param[2:(nparam + 1)]
}
for (ii in 1:nstat) {
simul_summary_stat[ii] = 1 + (simul_summary_stat[ii] - myMin[ii])/(myMax[ii] -
myMin[ii])
}
for (ii in 1:nstat) {
simul_summary_stat[ii] <- ((simul_summary_stat[ii]^lambda[ii]) -
1)/(lambda[ii] * (myGM[ii]^(lambda[ii] - 1)))
simul_summary_stat[ii] <- (simul_summary_stat[ii] - myBCMeans[ii])/myBCSDs[ii]
}
simul_summary_stat = as.matrix(simul_summary_stat)
dim(simul_summary_stat) <- c(nstat, 1)
simul_summary_stat = t(pls_transformation %*% simul_summary_stat)
dist_simul = .compute_dist(summary_stat_targ, as.numeric(simul_summary_stat),
rep(1, numcomp), dist_weights=dist_weights)
## AM8-9 print('AM8-9 ')
if (dist_simul < dist_max) {
param_ini = param
tab_simul_ini = as.numeric(simul_summary_stat_output)
dist_ini = dist_simul
}
seed_count = seed_count + 1
}
tab_simul_summary_stat = rbind(tab_simul_summary_stat, tab_simul_ini)
tab_param = rbind(tab_param, as.numeric(param_ini))
tab_dist = rbind(tab_dist, as.numeric(dist_ini))
if (verbose == TRUE) {
intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
}
if (progress_bar) {
# for progressbar message and time evaluation
duration = difftime(Sys.time(), startb, units = "secs")
text = ""
if (is == n_obs) {
text = paste("Completed in", format(.POSIXct(duration, tz = "GMT"),
"%H:%M:%S"), " ")
} else {
text = paste("Time elapsed:", format(.POSIXct(duration, tz = "GMT"),
"%H:%M:%S"), "Estimated time remaining:", format(.POSIXct(duration/is *
(n_obs - is), tz = "GMT"), "%H:%M:%S"))
}
.updateProgressBar(pb, is/n_obs, text)
}
}
if (progress_bar) {
close(pb)
}
tab_param2 = matrix(0, dim(tab_param)[1], dim(tab_param)[2])
for (i in 1:dim(tab_param)[1]) {
for (j in 1:dim(tab_param)[2]) {
tab_param2[i, j] = tab_param[i, j]
}
}
tab_simul_summary_stat2 = matrix(0, dim(tab_simul_summary_stat)[1], dim(tab_simul_summary_stat)[2])
for (i in 1:dim(tab_simul_summary_stat)[1]) {
for (j in 1:dim(tab_simul_summary_stat)[2]) {
tab_simul_summary_stat2[i, j] = tab_simul_summary_stat[i, j]
}
}
tab_dist2 = array(0, length(tab_dist))
for (i in 1:length(tab_dist)) {
tab_dist2[i] = tab_dist[i]
}
list(param = as.matrix(tab_param2), stats = as.matrix(tab_simul_summary_stat2),
dist = tab_dist2, epsilon = max(tab_dist), nsim = (seed_count - seed_count_ini),
n_between_sampling = n_between_sampling, min_stats = myMin, max_stats = myMax,
lambda = lambda, geometric_mean = myGM, boxcox_mean = myBCMeans, boxcox_sd = myBCSDs,
pls_transform = pls_transformation, n_component = numcomp, computime = as.numeric(difftime(Sys.time(),
start, units = "secs")))
}
## FUNCTION ABC_mcmc: ABC coupled to MCMC (Marjoram et al. 2003, Wegmann et al.
## 2009)
.ABC_mcmc_internal <- function(method, model, prior, prior_test, n_obs, n_between_sampling,
summary_stat_target, use_seed, verbose, dist_weights=NULL, ...) {
options(scipen = 50)
return(switch(EXPR = method, Marjoram_original = .ABC_MCMC(model, prior, prior_test,
n_obs, n_between_sampling, summary_stat_target, use_seed, verbose, dist_weights=dist_weights, ...),
Marjoram = .ABC_MCMC2(model, prior, prior_test, n_obs, n_between_sampling,
summary_stat_target, use_seed, verbose, dist_weights=dist_weights, ...), Wegmann = .ABC_MCMC3(model,
prior, prior_test, n_obs, n_between_sampling, summary_stat_target, use_seed,
verbose, dist_weights=dist_weights, ...)))
options(scipen = 0)
}
###################### parallel functions ###############
.ABC_rejection_internal_cluster <- function(model, prior, prior_test, nb_simul, seed_count = 0,
n_cluster = 1) {
cl <- makeCluster(getOption("cl.cores", n_cluster))
tab_simul_summarystat = NULL
tab_param = NULL
list_param = list(NULL)
npar = floor(nb_simul/(100 * n_cluster))
n_end = nb_simul - (npar * 100 * n_cluster)
if (npar > 0) {
for (irun in 1:npar) {
for (i in 1:(100 * n_cluster)) {
l = length(prior)
param = .sample_prior(prior, prior_test)
# if (use_seed) # NB: we force the value use_seed=TRUE
param = c((seed_count + i), param)
list_param[[i]] = param
tab_param = rbind(tab_param, param[2:(l + 1)])
}
seed_count = seed_count + 100 * n_cluster
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:(100 * n_cluster)) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
}
}
}
if (n_end > 0) {
# stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
list_param = list(NULL)
for (i in 1:n_end) {
l = length(prior)
param = .sample_prior(prior, prior_test)
# if (use_seed) # NB: we force the value use_seed=TRUE
param = c((seed_count + i), param)
list_param[[i]] = param
tab_param = rbind(tab_param, param[2:(l + 1)])
}
seed_count = seed_count + n_end
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:n_end) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
}
stopCluster(cl)
} else {
stopCluster(cl)
}
cbind(tab_param, tab_simul_summarystat)
}
## FUNCTION ABC_rejection: brute-force ABC (Pritchard et al. 1999)
.ABC_rejection_cluster <- function(model, prior, prior_test, nb_simul, seed_count = 0,
n_cluster = 1, verbose) {
if (verbose) {
write.table(NULL, file = "output", row.names = F, col.names = F, quote = F)
}
# library(parallel)
start = Sys.time()
options(scipen = 50)
cl <- makeCluster(getOption("cl.cores", n_cluster))
tab_simul_summarystat = NULL
tab_param = NULL
list_param = list(NULL)
npar = floor(nb_simul/(100 * n_cluster))
n_end = nb_simul - (npar * 100 * n_cluster)
if (npar > 0) {
for (irun in 1:npar) {
paramtemp = NULL
simultemp = NULL
for (i in 1:(100 * n_cluster)) {
l = length(prior)
param = .sample_prior(prior, prior_test)
# if (use_seed) # NB: we force the value use_seed=TRUE
param = c((seed_count + i), param)
list_param[[i]] = param
tab_param = rbind(tab_param, param[2:(l + 1)])
paramtemp = rbind(paramtemp, param[2:(l + 1)])
}
seed_count = seed_count + n_cluster
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:(100 * n_cluster)) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
simultemp = rbind(simultemp, as.numeric(list_simul_summarystat[[i]]))
}
if (verbose) {
intermed = cbind(as.matrix(paramtemp), as.matrix(simultemp))
write.table(intermed, file = "output", row.names = F, col.names = F,
quote = F, append = T)
}
}
}
if (n_end > 0) {
# stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
list_param = list(NULL)
paramtemp = NULL
simultemp = NULL
for (i in 1:n_end) {
l = length(prior)[1]
param = .sample_prior(prior, prior_test)
# if (use_seed) # NB: we force the value use_seed=TRUE
param = c((seed_count + i), param)
list_param[[i]] = param
tab_param = rbind(tab_param, param[2:(l + 1)])
paramtemp = rbind(paramtemp, param[2:(l + 1)])
}
seed_count = seed_count + n_end
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:n_end) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
simultemp = rbind(simultemp, as.numeric(list_simul_summarystat[[i]]))
}
if (verbose) {
intermed = cbind(as.matrix(paramtemp), as.matrix(simultemp))
write.table(intermed, file = "output", row.names = F, col.names = F,
quote = F, append = T)
}
stopCluster(cl)
} else {
stopCluster(cl)
}
options(scipen = 0)
sd_simul = sapply(as.data.frame(tab_simul_summarystat), sd)
list(param = as.matrix(tab_param), stats = as.matrix(tab_simul_summarystat),
weights = array(1/nb_simul, nb_simul), stats_normalization = as.numeric(sd_simul),
nsim = nb_simul, computime = as.numeric(difftime(Sys.time(), start, units = "secs")))
}
## function to perform ABC simulations from a non-uniform prior (derived from a
## set of particles)
.ABC_launcher_not_uniform_cluster <- function(model, prior, param_previous_step,
tab_weight, nb_simul, seed_count, inside_prior, n_cluster, max_pick=10000) {
tab_simul_summarystat = NULL
tab_param = NULL
cl <- makeCluster(getOption("cl.cores", n_cluster))
list_param = list(NULL)
npar = floor(nb_simul/(100 * n_cluster))
n_end = nb_simul - (npar * 100 * n_cluster)
if (npar > 0) {
for (irun in 1:npar) {
for (i in 1:(100 * n_cluster)) {
l = dim(param_previous_step)[2]
if (!inside_prior) {
# pick a particle
param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)),
tab_weight)
# move it
param_moved = .move_particle(as.numeric(param_picked), 2 * cov.wt(as.matrix(as.matrix(param_previous_step)),
as.vector(tab_weight))$cov) # only variable parameters are moved, computation of a WEIGHTED variance
} else {
test = FALSE
counter = 0
while ((!test) && (counter < max_pick)) {
counter = counter + 1
# pick a particle
param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)),
tab_weight)
# move it
param_moved = .move_particle(as.numeric(param_picked), 2 * cov.wt(as.matrix(as.matrix(param_previous_step)),
as.vector(tab_weight))$cov) # only variable parameters are moved, computation of a WEIGHTED variance
test = .is_included(param_moved, prior)
}
if (counter == max_pick) {
stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
}
}
param = param_previous_step[1, ]
param = param_moved
param = c((seed_count + i), param)
list_param[[i]] = param
tab_param = rbind(tab_param, param[2:(l + 1)])
}
seed_count = seed_count + 100 * n_cluster
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:(100 * n_cluster)) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
}
}
}
if (n_end > 0) {
# stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
list_param = list(NULL)
for (i in 1:n_end) {
l = dim(param_previous_step)[2]
if (!inside_prior) {
# pick a particle
param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)),
tab_weight)
# move it
param_moved = .move_particle(as.numeric(param_picked), 2 * cov.wt(as.matrix(as.matrix(param_previous_step)),
as.vector(tab_weight))$cov) # only variable parameters are moved, computation of a WEIGHTED variance
} else {
test = FALSE
counter = 0
while ((!test) && (counter < max_pick)) {
counter = counter + 1
# pick a particle
param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)),
tab_weight)
# move it
param_moved = .move_particle(as.numeric(param_picked), 2 * cov.wt(as.matrix(as.matrix(param_previous_step)),
as.vector(tab_weight))$cov) # only variable parameters are moved, computation of a WEIGHTED variance
test = .is_included(param_moved, prior)
}
if (counter == max_pick) {
stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
}
}
param = param_previous_step[1, ]
param = param_moved
param = c((seed_count + i), param)
list_param[[i]] = param
tab_param = rbind(tab_param, param[2:(l + 1)])
}
seed_count = seed_count + n_end
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:n_end) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
}
stopCluster(cl)
} else {
stopCluster(cl)
}
cbind(tab_param, tab_simul_summarystat)
}
## function to perform ABC simulations from a non-uniform prior and with
## unidimensional jumps
.ABC_launcher_not_uniform_uni_cluster <- function(model, prior, param_previous_step,
tab_weight, nb_simul, seed_count, inside_prior, n_cluster, max_pick=10000) {
tab_simul_summarystat = NULL
tab_param = NULL
cl <- makeCluster(getOption("cl.cores", n_cluster))
list_param = list(NULL)
npar = floor(nb_simul/(100 * n_cluster))
n_end = nb_simul - (npar * 100 * n_cluster)
l = dim(param_previous_step)[2]
l_array = dim(param_previous_step)[2]
if (is.null(l_array)) {
l_array = 1
}
sd_array = array(1, l_array)
covmat = 2 * cov.wt(as.matrix(as.matrix(param_previous_step)), as.vector(tab_weight))$cov # computation of a WEIGHTED variance
for (j in 1:l_array) {
sd_array[j] = sqrt(covmat[j, j])
}
if (npar > 0) {
for (irun in 1:npar) {
for (i in 1:(100 * n_cluster)) {
if (!inside_prior) {
# pick a particle
param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)),
tab_weight)
# move it
param_moved = .move_particle_uni(as.numeric(param_picked), sd_array) # only variable parameters are moved
} else {
test = FALSE
counter = 0
while ((!test) && (counter < max_pick)) {
counter = counter + 1
# pick a particle
param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)),
tab_weight)
# move it
param_moved = .move_particle_uni(as.numeric(param_picked), sd_array) # only variable parameters are moved
test = .is_included(param_moved, prior)
}
if (counter == max_pick) {
stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
}
}
param = param_previous_step[1, ]
param = param_moved
param = c((seed_count + i), param)
list_param[[i]] = param
tab_param = rbind(tab_param, param[2:(l + 1)])
}
seed_count = seed_count + 100 * n_cluster
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:(100 * n_cluster)) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
}
}
}
if (n_end > 0) {
# stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
list_param = list(NULL)
for (i in 1:n_end) {
if (!inside_prior) {
# pick a particle
param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)),
tab_weight)
# move it
param_moved = .move_particle_uni(as.numeric(param_picked), sd_array) # only variable parameters are moved
} else {
test = FALSE
counter = 0
while ((!test) && (counter < max_pick)) {
counter = counter + 1
# pick a particle
param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)),
tab_weight)
# move it
param_moved = .move_particle_uni(as.numeric(param_picked), sd_array) # only variable parameters are moved
test = .is_included(param_moved, prior)
}
if (counter == max_pick) {
stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
}
}
param = param_previous_step[1, ]
param = param_moved
param = c((seed_count + i), param)
list_param[[i]] = param
tab_param = rbind(tab_param, param[2:(l + 1)])
}
seed_count = seed_count + n_end
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:n_end) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
}
stopCluster(cl)
} else {
stopCluster(cl)
}
cbind(tab_param, tab_simul_summarystat)
}
## PMC ABC algorithm: Beaumont et al. Biometrika 2009
.ABC_PMC_cluster <- function(model, prior, prior_test, nb_simul, summary_stat_target,
n_cluster, verbose, dist_weights=NULL, seed_count = 0, inside_prior = TRUE, tolerance_tab = -1,
progress_bar = FALSE, max_pick=10000) {
## checking errors in the inputs
if (!is.vector(seed_count))
stop("'seed_count' has to be a number.")
if (length(seed_count) > 1)
stop("'seed_count' has to be a number.")
if (seed_count < 0)
stop("'seed_count' has to be a positive number.")
seed_count = floor(seed_count)
if (!is.logical(inside_prior))
stop("'inside_prior' has to be boolean.")
if (!is.vector(tolerance_tab))
stop("'tolerance_tab' has to be a vector.")
if (tolerance_tab[1] == -1)
stop("'tolerance_tab' is missing")
if (min(tolerance_tab) <= 0)
stop("tolerance values have to be strictly positive.")
lll = length(tolerance_tab)
if (lll <= 1)
stop("at least two tolerance values need to be provided.")
if (min(tolerance_tab[1:(lll - 1)] - tolerance_tab[2:lll]) <= 0)
stop("tolerance values have to decrease.")
if (progress_bar) {
print(" ------ Beaumont et al. (2009)'s algorithm ------")
}
start = Sys.time()
seed_count_ini = seed_count
T = length(tolerance_tab)
nparam = length(prior)
nstat = length(summary_stat_target)
## step 1
nb_simul_step = nb_simul
simul_below_tol = NULL
while (nb_simul_step > 0) {
if (nb_simul_step > 1) {
# classic ABC step
tab_ini = .ABC_rejection_internal_cluster(model, prior, prior_test, nb_simul_step,
seed_count, n_cluster)
if (nb_simul_step == nb_simul) {
sd_simul = sapply(as.data.frame(tab_ini[, (nparam + 1):(nparam +
nstat)]), sd) # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
}
seed_count = seed_count + nb_simul_step
# selection of simulations below the first tolerance level
simul_below_tol = rbind(simul_below_tol, .selec_simul(summary_stat_target,
as.matrix(as.matrix(tab_ini)[, 1:nparam]), as.matrix(as.matrix(tab_ini)[,
(nparam + 1):(nparam + nstat)]), sd_simul, tolerance_tab[1], dist_weights=dist_weights))
if (length(simul_below_tol) > 0) {
nb_simul_step = nb_simul - dim(simul_below_tol)[1]
}
} else {
tab_ini = .ABC_rejection_internal_cluster(model, prior, prior_test, nb_simul_step,
seed_count, n_cluster)
seed_count = seed_count + nb_simul_step
if (.compute_dist(summary_stat_target, tab_ini[(nparam + 1):(nparam +
nstat)], sd_simul, dist_weights=dist_weights) < tolerance_tab[1]) {
simul_below_tol = rbind(simul_below_tol, tab_ini)
nb_simul_step = 0
}
}
} # until we get nb_simul simulations below the first tolerance threshold
# initially, weights are equal
tab_weight = array(1/nb_simul, nb_simul)
intermediary_steps = list(NULL)
if (verbose == TRUE) {
write.table(cbind(tab_weight, simul_below_tol), file = "output_step1", row.names = F,
col.names = F, quote = F)
write.table((seed_count - seed_count_ini), file = "n_simul_tot_step1", row.names = F,
col.names = F, quote = F)
intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - seed_count_ini),
posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
}
if (progress_bar) {
print("step 1 completed")
}
## steps 2 to T
for (it in 2:T) {
nb_simul_step = nb_simul
simul_below_tol2 = NULL
while (nb_simul_step > 0) {
if (nb_simul_step > 1) {
# Sampling of parameters around the previous particles
tab_ini = .ABC_launcher_not_uniform_uni_cluster(model, prior, as.matrix(as.matrix(simul_below_tol)[,
1:nparam]), tab_weight, nb_simul_step, seed_count, inside_prior,
n_cluster, max_pick)
seed_count = seed_count + nb_simul_step
simul_below_tol2 = rbind(simul_below_tol2, .selec_simul(summary_stat_target,
as.matrix(as.matrix(tab_ini)[, 1:nparam]), as.matrix(as.matrix(tab_ini)[,
(nparam + 1):(nparam + nstat)]), sd_simul, tolerance_tab[it], dist_weights=dist_weights))
if (length(simul_below_tol2) > 0) {
nb_simul_step = nb_simul - dim(simul_below_tol2)[1]
}
} else {
tab_ini = .ABC_launcher_not_uniform_uni_cluster(model, prior, as.matrix(as.matrix(simul_below_tol)[,
1:nparam]), tab_weight, nb_simul_step, seed_count, inside_prior,
n_cluster, max_pick)
seed_count = seed_count + nb_simul_step
if (.compute_dist(summary_stat_target, tab_ini[(nparam + 1):(nparam +
nstat)], sd_simul, dist_weights=dist_weights) < tolerance_tab[it]) {
simul_below_tol2 = rbind(simul_below_tol2, tab_ini)
nb_simul_step = 0
}
}
} # until we get nb_simul simulations below the it-th tolerance threshold
# update of particle weights
tab_weight2 = .compute_weight_uni(as.matrix(as.matrix(as.matrix(simul_below_tol2)[,
1:nparam])), as.matrix(as.matrix(as.matrix(simul_below_tol)[, 1:nparam])),
tab_weight, prior)
# update of the set of particles and of the associated weights for the next ABC
# sequence
tab_weight = tab_weight2
simul_below_tol = matrix(0, nb_simul, (nparam + nstat))
for (i1 in 1:nb_simul) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[i1, i2])
}
}
if (verbose == TRUE) {
write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = paste("output_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
write.table((seed_count - seed_count_ini), file = paste("n_simul_tot_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
intermediary_steps[[it]] = list(n_simul_tot = as.numeric(seed_count -
seed_count_ini), posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
}
if (progress_bar) {
print(paste("step ", it, " completed", sep = ""))
}
}
final_res = NULL
if (verbose == TRUE) {
final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]),
stats = as.matrix(as.matrix(as.matrix(simul_below_tol))[, (nparam + 1):(nparam +
nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul),
epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
seed_count_ini), computime = as.numeric(difftime(Sys.time(), start,
units = "secs")), intermediary = intermediary_steps)
} else {
final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]),
stats = as.matrix(as.matrix(as.matrix(simul_below_tol))[, (nparam + 1):(nparam +
nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul),
epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
seed_count_ini), computime = as.numeric(difftime(Sys.time(), start,
units = "secs")))
}
final_res
}
.move_drovandi_ini_cluster <- function(nb_simul_step, simul_below_tol, tab_weight,
nparam, nstat, prior, summary_stat_target, tol_next, dist_weights, seed_count, n_cluster, model,
sd_simul, max_pick=10000) {
i_acc = 0
res = NULL
npar = floor(nb_simul_step/(100 * n_cluster))
n_end = nb_simul_step - (npar * 100 * n_cluster)
l = length(prior)
list_param = list(NULL)
cl <- makeCluster(getOption("cl.cores", n_cluster))
if (npar > 0) {
for (irun in 1:npar) {
tab_param = NULL
tab_picked = NULL
for (i in 1:(100 * n_cluster)) {
# pick a particle
simul_picked = .particle_pick(simul_below_tol, tab_weight)
# move it
param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(as.matrix(simul_below_tol)[,
1:nparam]))), prior, max_pick)
param = simul_picked[1:nparam]
param = param_moved
param = c((seed_count + i), param)
tab_param = rbind(tab_param, param[2:(l + 1)])
list_param[[i]] = param
tab_picked = rbind(tab_picked, as.numeric(simul_picked))
}
seed_count = seed_count + n_cluster
# perform simulations
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:(100 * n_cluster)) {
# check whether it is below tol_next and undo the move if it is not
new_simul = c(as.numeric(tab_param[i, ]), as.numeric(list_simul_summarystat[[i]]))
if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam +
1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
# we authorize the simulation to be equal to the tolerance level, for consistency
# with the quantile definition of the tolerance
tab_picked[i, ] = as.numeric(new_simul)
i_acc = i_acc + 1
}
}
res = rbind(res, tab_picked)
}
}
if (n_end > 0) {
# stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
list_param = list(NULL)
tab_picked = NULL
tab_param = NULL
for (i in 1:n_end) {
# pick a particle
simul_picked = .particle_pick(simul_below_tol, tab_weight)
# move it
param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(as.matrix(simul_below_tol)[,
1:nparam]))), prior, max_pick)
param = simul_picked[1:nparam]
param = param_moved
param = c((seed_count + i), param)
tab_param = rbind(tab_param, param[2:(l + 1)])
list_param[[i]] = param
tab_picked = rbind(tab_picked, as.numeric(simul_picked))
}
seed_count = seed_count + n_end
# perform simulations
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:n_end) {
# check whether it is below tol_next and undo the move if it is not
new_simul = c(as.numeric(tab_param[i, ]), as.numeric(list_simul_summarystat[[i]]))
if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam +
1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
# we authorize the simulation to be equal to the tolerance level, for consistency
# with the quantile definition of the tolerance
tab_picked[i, ] = as.numeric(new_simul)
i_acc = i_acc + 1
}
}
res = rbind(res, tab_picked)
stopCluster(cl)
} else {
stopCluster(cl)
}
list(res, i_acc)
}
.move_drovandi_end_cluster <- function(nb_simul_step, new_particles, nparam, nstat,
prior, summary_stat_target, tol_next, dist_weights, seed_count, n_cluster, model, sd_simul, max_pick=10000) {
i_acc = 0
res = NULL
npar = floor(nb_simul_step/(100 * n_cluster))
n_end = nb_simul_step - (npar * 100 * n_cluster)
l = length(prior)
list_param = list(NULL)
cl <- makeCluster(getOption("cl.cores", n_cluster))
if (npar > 0) {
for (irun in 1:npar) {
tab_param = NULL
tab_picked = NULL
for (i in 1:(100 * n_cluster)) {
# pick a particle
simul_picked = new_particles[((irun - 1) * n_cluster + i), ]
# move it
param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(as.matrix(new_particles)[,
1:nparam]))), prior, max_pick)
param = simul_picked[1:nparam]
param = param_moved
param = c((seed_count + i), param)
tab_param = rbind(tab_param, param[2:(l + 1)])
list_param[[i]] = param
tab_picked = rbind(tab_picked, as.numeric(simul_picked))
}
seed_count = seed_count + 100 * n_cluster
# perform simulations
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:(100 * n_cluster)) {
# check whether it is below tol_next and undo the move if it is not
new_simul = c(as.numeric(tab_param[i, ]), as.numeric(list_simul_summarystat[[i]]))
if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam +
1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
# we authorize the simulation to be equal to the tolerance level, for consistency
# with the quantile definition of the tolerance
tab_picked[i, ] = as.numeric(new_simul)
i_acc = i_acc + 1
}
}
res = rbind(res, tab_picked)
}
}
if (n_end > 0) {
# stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
list_param = list(NULL)
tab_picked = NULL
tab_param = NULL
for (i in 1:n_end) {
# pick a particle
simul_picked = new_particles[(npar * n_cluster + i), ]
# move it
param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(as.matrix(new_particles)[,
1:nparam]))), prior, max_pick)
param = simul_picked[1:nparam]
param = param_moved
param = c((seed_count + i), param)
tab_param = rbind(tab_param, param[2:(l + 1)])
list_param[[i]] = param
tab_picked = rbind(tab_picked, as.numeric(simul_picked))
}
seed_count = seed_count + n_end
# perform simulations
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:n_end) {
# check whether it is below tol_next and undo the move if it is not
new_simul = c(as.numeric(tab_param[i, ]), as.numeric(list_simul_summarystat[[i]]))
if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam +
1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
# we authorize the simulation to be equal to the tolerance level, for consistency
# with the quantile definition of the tolerance
tab_picked[i, ] = as.numeric(new_simul)
i_acc = i_acc + 1
}
}
res = rbind(res, tab_picked)
stopCluster(cl)
} else {
stopCluster(cl)
}
list(res, i_acc)
}
.move_drovandi_diversify_cluster <- function(nb_simul_step, new_particles, nparam,
nstat, prior, summary_stat_target, tol_next, dist_weights, seed_count, n_cluster, model, sd_simul, max_pick=10000) {
i_acc = 0
res = NULL
npar = floor(nb_simul_step/(100 * n_cluster))
n_end = nb_simul_step - (npar * 100 * n_cluster)
l = length(prior)
list_param = list(NULL)
cl <- makeCluster(getOption("cl.cores", n_cluster))
if (npar > 0) {
for (irun in 1:npar) {
tab_param = NULL
tab_picked = NULL
for (i in 1:(100 * n_cluster)) {
# pick a particle
simul_picked = new_particles[((irun - 1) * n_cluster + i), ]
# move it
param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(as.matrix(new_particles)[,
1:nparam]))), prior, max_pick)
param = simul_picked[1:nparam]
param = param_moved
param = c((seed_count + i), param)
tab_param = rbind(tab_param, param[2:(l + 1)])
list_param[[i]] = param
tab_picked = rbind(tab_picked, as.numeric(simul_picked))
}
seed_count = seed_count + 100 * n_cluster
# perform simulations
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:(100 * n_cluster)) {
# check whether it is below tol_next and undo the move if it is not
new_simul = c(as.numeric(tab_param[i, ]), as.numeric(list_simul_summarystat[[i]]))
if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam +
1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
# we authorize the simulation to be equal to the tolerance level, for consistency
# with the quantile definition of the tolerance
tab_picked[i, ] = as.numeric(new_simul)
i_acc = i_acc + 1
}
}
res = rbind(res, tab_picked)
}
}
if (n_end > 0) {
# stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
list_param = list(NULL)
tab_picked = NULL
tab_param = NULL
for (i in 1:n_end) {
# pick a particle
simul_picked = new_particles[(npar * n_cluster + i), ]
# move it
param_moved = .move_particleb(simul_picked[1:nparam], 2 * var(as.matrix(as.matrix(as.matrix(new_particles)[,
1:nparam]))), prior, max_pick)
param = simul_picked[1:nparam]
param = param_moved
param = c((seed_count + i), param)
tab_param = rbind(tab_param, param[2:(l + 1)])
list_param[[i]] = param
tab_picked = rbind(tab_picked, as.numeric(simul_picked))
}
seed_count = seed_count + n_end
# perform simulations
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:n_end) {
# check whether it is below tol_next and undo the move if it is not
new_simul = c(as.numeric(tab_param[i, ]), as.numeric(list_simul_summarystat[[i]]))
if (.compute_dist(summary_stat_target, as.numeric(new_simul[(nparam +
1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights) <= tol_next) {
# we authorize the simulation to be equal to the tolerance level, for consistency
# with the quantile definition of the tolerance
tab_picked[i, ] = as.numeric(new_simul)
i_acc = i_acc + 1
}
}
res = rbind(res, tab_picked)
stopCluster(cl)
} else {
stopCluster(cl)
}
res
}
## sequential algorithm of Drovandi & Pettitt 2011 - the proposal used is a
## multivariate normal (cf paragraph 2.2 - p. 227 in Drovandi & Pettitt 2011)
.ABC_Drovandi_cluster <- function(model, prior, prior_test, nb_simul, summary_stat_target,
n_cluster, verbose, dist_weights=NULL, seed_count = 0, tolerance_tab = -1, alpha = 0.5, c = 0.01,
first_tolerance_level_auto = TRUE, progress_bar = FALSE, max_pick=10000) {
## checking errors in the inputs
if (!is.vector(seed_count))
stop("'seed_count' has to be a number.")
if (length(seed_count) > 1)
stop("'seed_count' has to be a number.")
if (seed_count < 0)
stop("'seed_count' has to be a positive number.")
seed_count = floor(seed_count)
if (!is.vector(tolerance_tab))
stop("'tolerance_tab' has to be a vector.")
if (tolerance_tab[1] == -1)
stop("'tolerance_tab' is missing")
if (min(tolerance_tab) <= 0)
stop("tolerance values have to be strictly positive.")
if (!is.vector(alpha))
stop("'alpha' has to be a number.")
if (length(alpha) > 1)
stop("'alpha' has to be a number.")
if (alpha <= 0)
stop("'alpha' has to be between 0 and 1.")
if (alpha >= 1)
stop("'alpha' has to be between 0 and 1.")
if (!is.vector(c))
stop("'c' has to be a vector.")
if (length(c) > 1)
stop("'c' has to be a number.")
if (c <= 0)
stop("'c' has to be between 0 and 1.")
if (c >= 1)
stop("'c' has to be between 0 and 1.")
if (!is.logical(first_tolerance_level_auto))
stop("'first_tolerance_level_auto' has to be boolean.")
if (progress_bar) {
print(" ------ Drovandi & Pettitt (2011)'s algorithm ------")
}
start = Sys.time()
seed_count_ini = seed_count
n_alpha = ceiling(nb_simul * alpha)
nparam = length(prior)
nstat = length(summary_stat_target)
if (first_tolerance_level_auto) {
tol_end = tolerance_tab[1]
} else {
tol_end = tolerance_tab[2]
}
## step 1
nb_simul_step = ceiling(nb_simul/(1 - alpha))
simul_below_tol = NULL
if (first_tolerance_level_auto) {
# classic ABC step
tab_ini = .ABC_rejection_internal_cluster(model, prior, prior_test, nb_simul_step,
seed_count, n_cluster)
sd_simul = sapply(as.data.frame(tab_ini[, (nparam + 1):(nparam + nstat)]),
sd) # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
seed_count = seed_count + nb_simul_step
# selection of simulations below the first tolerance level
simul_below_tol = rbind(simul_below_tol, .selec_simul_alpha(summary_stat_target,
as.matrix(as.matrix(tab_ini)[, 1:nparam]), as.matrix(as.matrix(tab_ini)[,
(nparam + 1):(nparam + nstat)]), sd_simul, (1 - alpha), dist_weights=dist_weights))
simul_below_tol = simul_below_tol[1:nb_simul, ] # to be sure that there are not two or more simulations at a distance equal to the tolerance determined by the quantile
} else {
nb_simul_step = nb_simul
while (nb_simul_step > 0) {
if (nb_simul_step > 1) {
# classic ABC step
tab_ini = .ABC_rejection_internal_cluster(model, prior, prior_test,
nb_simul_step, seed_count, n_cluster)
if (nb_simul_step == nb_simul) {
sd_simul = sapply(as.data.frame(tab_ini[, (nparam + 1):(nparam +
nstat)]), sd) # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
}
seed_count = seed_count + nb_simul_step
# selection of simulations below the first tolerance level
simul_below_tol = rbind(simul_below_tol, .selec_simulb(summary_stat_target,
as.matrix(as.matrix(tab_ini)[, 1:nparam]), as.matrix(as.matrix(tab_ini)[,
(nparam + 1):(nparam + nstat)]), sd_simul, tolerance_tab[1], dist_weights=dist_weights)) # we authorize the simulation to be equal to the tolerance level, for consistency with the quantile definition of the tolerance
if (length(simul_below_tol) > 0) {
nb_simul_step = nb_simul - dim(simul_below_tol)[1]
}
} else {
tab_ini = .ABC_rejection_internal_cluster(model, prior, prior_test,
nb_simul_step, seed_count, n_cluster)
seed_count = seed_count + nb_simul_step
if (.compute_dist(summary_stat_target, tab_ini[(nparam + 1):(nparam +
nstat)], sd_simul, dist_weights=dist_weights) <= tolerance_tab[1]) {
simul_below_tol = rbind(simul_below_tol, tab_ini)
nb_simul_step = 0
}
}
} # until we get nb_simul simulations below the first tolerance threshold
}
# initially, weights are equal
tab_weight = array(1/nb_simul, nb_simul)
intermediary_steps = list(NULL)
if (verbose == TRUE) {
write.table(cbind(tab_weight, simul_below_tol), file = "output_step1", row.names = F,
col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1",
row.names = F, col.names = F, quote = F)
intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - seed_count_ini),
posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
}
if (progress_bar) {
print("step 1 completed")
}
## following steps until tol_end is reached
tol_next = tolerance_tab[1]
if (first_tolerance_level_auto) {
tol_next = max(.compute_dist(summary_stat_target, simul_below_tol[, (nparam +
1):(nparam + nstat)], sd_simul, dist_weights=dist_weights))
}
R = 1
l = dim(simul_below_tol)[2]
it = 1
while (tol_next > tol_end) {
it = it + 1
i_acc = 0
nb_simul_step = n_alpha
# compute epsilon_next
tol_next = sort(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights))[(nb_simul - n_alpha)]
# drop the n_alpha poorest particles
simul_below_tol2 = .selec_simulb(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
1:nparam]), as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam +
nstat)]), sd_simul, tol_next, dist_weights=dist_weights) # we authorize the simulation to be equal to the tolerance level, for consistency with the quantile definition of the tolerance
simul_below_tol = matrix(0, (nb_simul - n_alpha), (nparam + nstat))
for (i1 in 1:(nb_simul - n_alpha)) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[i1, i2])
}
}
md = .move_drovandi_ini_cluster(nb_simul_step, simul_below_tol, tab_weight[1:(nb_simul -
n_alpha)], nparam, nstat, prior, summary_stat_target, tol_next, dist_weights, seed_count,
n_cluster, model, sd_simul, max_pick)
new_particles = md[[1]]
i_acc = i_acc + md[[2]]
seed_count = seed_count + nb_simul_step
if (R > 1) {
for (j in 2:R) {
md = .move_drovandi_end_cluster(nb_simul_step, new_particles, nparam,
nstat, prior, summary_stat_target, tol_next, dist_weights, seed_count, n_cluster,
model, sd_simul, max_pick)
new_particles = md[[1]]
i_acc = i_acc + md[[2]]
seed_count = seed_count + nb_simul_step
}
}
simul_below_tol3 = matrix(0, nb_simul, (nparam + nstat))
for (i1 in 1:(nb_simul - n_alpha)) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol3[i1, i2] = as.numeric(simul_below_tol[i1, i2])
}
}
for (i1 in (nb_simul - n_alpha + 1):nb_simul) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol3[i1, i2] = as.numeric(new_particles[(i1 - nb_simul +
n_alpha), i2])
}
}
simul_below_tol = simul_below_tol3
p_acc = max(1, i_acc)/(nb_simul_step * R) # to have a strictly positive p_acc
Rp = R
if (p_acc < 1) {
R = ceiling(log(c)/log(1 - p_acc))
} else {
R = 1
}
if (verbose == TRUE) {
write.table(as.numeric(tol_next), file = paste("tolerance_step", it,
sep = ""), row.names = F, col.names = F, quote = F)
write.table(as.numeric(Rp), file = paste("R_step", it, sep = ""), row.names = F,
col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
write.table(cbind(tab_weight, simul_below_tol), file = paste("output_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
intermediary_steps[[it]] = list(n_simul_tot = as.numeric(seed_count -
seed_count_ini), R_step = as.numeric(Rp), tol_step = as.numeric(tol_next),
posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
}
tol_next = max(.compute_dist(summary_stat_target, simul_below_tol[, (nparam +
1):(nparam + nstat)], sd_simul, dist_weights=dist_weights))
if (progress_bar) {
print(paste("step ", it, " completed - R used = ", Rp, " - tol = ", tol_next,
" - next R used will be ", R, sep = ""))
}
}
## final step to diversify the n_alpha particles
simul_below_tol2 = NULL
for (j in 1:R) {
simul_below_tol = .move_drovandi_diversify_cluster(nb_simul, simul_below_tol,
nparam, nstat, prior, summary_stat_target, tol_next, dist_weights, seed_count, n_cluster,
model, sd_simul, max_pick)
seed_count = seed_count + nb_simul
}
final_res = NULL
if (verbose == TRUE) {
final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]),
stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam +
nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul),
epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
seed_count_ini), computime = as.numeric(difftime(Sys.time(), start,
units = "secs")), intermediary = intermediary_steps)
} else {
final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]),
stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam +
nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul),
epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
seed_count_ini), computime = as.numeric(difftime(Sys.time(), start,
units = "secs")))
}
final_res
}
## rejection algorithm with M simulations per parameter set
.ABC_rejection_M_cluster <- function(model, prior, prior_test, nb_simul, M, seed_count,
n_cluster) {
tab_simul_summarystat = NULL
tab_param = NULL
list_param = list(NULL)
npar = floor(nb_simul * M/(100 * n_cluster))
n_end = nb_simul * M - (npar * 100 * n_cluster)
cl <- makeCluster(getOption("cl.cores", n_cluster))
l = length(prior)
param2 = array(0, (l + 1))
if (npar > 0) {
for (irun in 1:npar) {
for (irun2 in 1:(100 * n_cluster)) {
ii = (100 * n_cluster * (irun - 1) + irun2)%%M
if ((ii == 1) || (M == 1)) {
param = .sample_prior(prior, prior_test)
param2 = c((seed_count + 1), param)
seed_count = seed_count + 1
} else {
param2[1] = param2[1] + 1
seed_count = seed_count + 1
}
list_param[[irun2]] = param2
tab_param = rbind(tab_param, param2[2:(l + 1)])
}
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:(100 * n_cluster)) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
}
}
}
if (n_end > 0) {
list_param = list(NULL)
for (irun2 in 1:n_end) {
ii = (100 * n_cluster * npar + irun2)%%M
if ((ii == 1) || (M == 1)) {
param = .sample_prior(prior, prior_test)
param2 = c((seed_count + 1), param)
seed_count = seed_count + 1
} else {
param2[1] = param2[1] + 1
seed_count = seed_count + 1
}
list_param[[irun2]] = param2
tab_param = rbind(tab_param, param2[2:(l + 1)])
}
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:n_end) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
}
}
stopCluster(cl)
cbind(tab_param, tab_simul_summarystat)
}
## sequential algorithm of Del Moral et al. 2012 - the proposal used is a normal
## in each dimension (cf paragraph 3.2 in Del Moral et al. 2012)
.ABC_Delmoral_cluster <- function(model, prior, prior_test, nb_simul, summary_stat_target,
n_cluster, verbose, alpha = 0.9, M = 1, nb_threshold = floor(nb_simul/2), tolerance_target = -1,
dist_weights=NULL, seed_count = 0, progress_bar = FALSE, max_pick=10000) {
## checking errors in the inputs
if (!is.vector(alpha))
stop("'alpha' has to be a number.")
if (length(alpha) > 1)
stop("'alpha' has to be a number.")
if (alpha <= 0)
stop("'alpha' has to be between 0 and 1.")
if (alpha >= 1)
stop("'alpha' has to be between 0 and 1.")
if (!is.vector(M))
stop("'M' has to be a number.")
if (length(M) > 1)
stop("'M' has to be a number.")
if (M < 1)
stop("'M' has to be a positive integer.")
M = floor(M)
if (!is.vector(nb_threshold))
stop("'nb_threshold' has to be a number.")
if (length(nb_threshold) > 1)
stop("'nb_threshold' has to be a number.")
if (nb_threshold < 1)
stop("'nb_threshold' has to be a positive integer.")
nb_threshold = floor(nb_threshold)
if (!is.vector(tolerance_target))
stop("'tolerance_target' has to be a number.")
if (length(tolerance_target) > 1)
stop("'tolerance_target' has to be a number.")
if (tolerance_target <= 0)
stop("'tolerance_target' has to be positive.")
if (!is.vector(seed_count))
stop("'seed_count' has to be a number.")
if (length(seed_count) > 1)
stop("'seed_count' has to be a number.")
if (seed_count < 0)
stop("'seed_count' has to be a positive number.")
seed_count = floor(seed_count)
start = Sys.time()
if (progress_bar) {
print(" ------ Delmoral et al. (2012)'s algorithm ------")
}
seed_count_ini = seed_count
nparam = length(prior)
nstat = length(summary_stat_target)
# step 1 classic ABC step
simul_below_tol = .ABC_rejection_M_cluster(model, prior, prior_test, nb_simul,
M, seed_count, n_cluster)
seed_count = seed_count + M * nb_simul
tab_weight = rep(1/nb_simul, nb_simul)
ESS = nb_simul
uu = (1:nb_simul) * M # to compute sd_simul with only one simulation per parameter set
sd_simul = sapply(as.data.frame(simul_below_tol[uu, (nparam + 1):(nparam + nstat)]),
sd) # determination of the normalization constants in each dimension associated to each summary statistic, this normalization will not change during all the algorithm
l = dim(simul_below_tol)[2]
if (M > 1) {
particle_dist_mat = .compute_dist_M(M, summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
} else {
particle_dist_mat = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
}
dim(particle_dist_mat) <- c(nb_simul, M)
new_tolerance = max(particle_dist_mat)
tab_weight2 = .replicate_tab(tab_weight, M)
intermediary_steps = list(NULL)
if (verbose == TRUE) {
write.table(cbind(tab_weight2, simul_below_tol), file = "output_step1", row.names = F,
col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1",
row.names = F, col.names = F, quote = F)
intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - seed_count_ini),
posterior = as.matrix(cbind(tab_weight2, simul_below_tol)))
}
if (progress_bar) {
print("step 1 completed")
}
# following steps
kstep = 1
l = length(prior)
cl <- makeCluster(getOption("cl.cores", n_cluster))
while (new_tolerance > tolerance_target) {
kstep = kstep + 1
# determination of the new tolerance
ESS_target = alpha * ESS
tolerance_list = sort(as.numeric(names(table(particle_dist_mat))), decreasing = TRUE)
i = 1
test = FALSE
while ((!test) && (i < length(tolerance_list))) {
i = i + 1
# computation of new ESS with the new tolerance value
new_ESS = .compute_ESS(particle_dist_mat, tolerance_list[i])
# check whether this value is below ESS_targ
if (new_ESS < ESS_target) {
new_tolerance = tolerance_list[(i - 1)]
test = TRUE
}
}
# if effective sample size is too small, resampling of particles
ESS = .compute_ESS(particle_dist_mat, new_tolerance)
tab_weight = .compute_weight_delmoral(particle_dist_mat, new_tolerance)
tab_below = .compute_below(particle_dist_mat, new_tolerance)
particles = matrix(0, (nb_simul * M), (nparam + nstat))
if (ESS < nb_threshold) {
# sample nb_simul particles
for (i in 1:nb_simul) {
particles[((1:M) + (i - 1) * M), ] = as.matrix(.particle_pick_delmoral(simul_below_tol,
tab_weight, M))
}
simul_below_tol = matrix(0, nb_simul * M, (nparam + nstat))
for (i1 in 1:(nb_simul * M)) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[i1, i2] = as.numeric(particles[i1, i2])
}
}
particles = as.matrix(particles[uu, 1:nparam])
if (M > 1) {
particle_dist_mat = .compute_dist_M(M, summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
} else {
particle_dist_mat = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
}
dim(particle_dist_mat) <- c(nb_simul, M)
tab_below = .compute_below(particle_dist_mat, new_tolerance)
# reset their weight to 1/nb_simul
tab_weight = rep(1/nb_simul, nb_simul)
ESS = nb_simul
} else {
particles = as.matrix(simul_below_tol[, 1:nparam])
}
# MCMC move
npar = floor(nb_simul * M/(100 * n_cluster))
n_end = nb_simul * M - (npar * 100 * n_cluster)
covmat = 2 * cov.wt(as.matrix(as.matrix(particles[uu, ])[tab_weight > 0,
]), as.vector(tab_weight[tab_weight > 0]))$cov
l_array = dim(particles)[2]
if (is.null(l_array)) {
l_array = 1
}
sd_array = array(1, l_array)
for (j in 1:l_array) {
sd_array[j] = sqrt(covmat[j, j])
}
simul_below_tol2 = simul_below_tol
simul_below_tol = matrix(0, nb_simul * M, (nparam + nstat))
param2 = array(0, (l + 1))
tab_param = NULL
tab_simul_summarystat = NULL
if (npar > 0) {
for (irun in 1:npar) {
list_param = list(NULL)
ic = 1
for (irun2 in 1:(100 * n_cluster)) {
ii = (100 * n_cluster * (irun - 1) + irun2)%%M
ii2 = ceiling((100 * n_cluster * (irun - 1) + irun2)/M)
if (tab_weight[ii2] > 0) {
if ((ii == 1) || (M == 1)) {
param_moved = .move_particleb_uni(as.numeric(particles[(ii2 *
M), ]), sd_array, prior, max_pick)
param = particles[(ii2 * M), ]
param = param_moved
param2 = c((seed_count + 1), param)
seed_count = seed_count + 1
} else {
param2[1] = param2[1] + 1
seed_count = seed_count + 1
}
list_param[[ic]] = param2
ic = ic + 1
tab_param = rbind(tab_param, param2[2:(l + 1)])
}
}
list_simul_summarystat = parLapplyLB(cl, list_param, model)
ic = ic - 1
for (ii in 1:ic) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[ii]]))
}
}
}
if (n_end > 0) {
list_param = list(NULL)
ic = 1
for (irun2 in 1:n_end) {
ii = (100 * n_cluster * npar + irun2)%%M
ii2 = ceiling((100 * n_cluster * npar + irun2)/M)
if (tab_weight[ii2] > 0) {
if ((ii == 1) || (M == 1)) {
param_moved = .move_particleb_uni(as.numeric(particles[(ii2 *
M), ]), sd_array, prior, max_pick)
param = particles[(ii2 * M), ]
param = param_moved
param2 = c((seed_count + 1), param)
seed_count = seed_count + 1
} else {
param2[1] = param2[1] + 1
seed_count = seed_count + 1
}
list_param[[ic]] = param2
ic = ic + 1
tab_param = rbind(tab_param, param2[2:(l + 1)])
}
}
list_simul_summarystat = parLapplyLB(cl, list_param, model)
ic = ic - 1
for (ii in 1:ic) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[ii]]))
}
}
tab_new_simul = cbind(tab_param, tab_simul_summarystat)
tab_new_simul2 = matrix(0, dim(tab_new_simul)[1], dim(tab_new_simul)[2])
for (i1 in 1:(dim(tab_new_simul)[1])) {
for (i2 in 1:(nparam + nstat)) {
tab_new_simul2[i1, i2] = as.numeric(tab_new_simul[i1, i2])
}
}
iii = 0
for (i in 1:nb_simul) {
if (tab_weight[i] > 0) {
iii = iii + 1
n_acc = 1
if (M > 1) {
new_dist = .compute_dist_M(M, summary_stat_target, tab_new_simul2[(((iii -
1) * M + 1):(iii * M)), (nparam + 1):(nparam + nstat)], sd_simul, dist_weights=dist_weights)
n_acc = length(new_dist[new_dist < new_tolerance])
} else {
new_dist = .compute_dist(summary_stat_target, rbind(tab_new_simul2[iii,
(nparam + 1):(nparam + nstat)], tab_new_simul2[iii, (nparam +
1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
if (new_dist[1] > new_tolerance) {
n_acc = 0
}
}
MH = min(1, (n_acc/tab_below[i]))
uuu = runif(1)
if (uuu <= MH) {
for (i1 in 1:M) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[((i1) + (i - 1) * M), i2] = as.numeric(tab_new_simul2[((iii -
1) * M + i1), i2])
}
}
} else {
for (i1 in 1:M) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[((i1) + (i - 1) * M), i2] = as.numeric(simul_below_tol2[((i1) +
(i - 1) * M), i2])
}
}
}
} else {
for (i1 in 1:M) {
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[((i1) + (i - 1) * M), i2] = as.numeric(simul_below_tol2[((i1) +
(i - 1) * M), i2])
}
}
}
}
if (M > 1) {
particle_dist_mat = .compute_dist_M(M, summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
} else {
particle_dist_mat = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
}
dim(particle_dist_mat) <- c(nb_simul, M)
tab_weight = .compute_weight_delmoral(particle_dist_mat, new_tolerance)
tab_weight2 = .replicate_tab(tab_weight, M)
if (verbose == TRUE) {
write.table(as.numeric(new_tolerance), file = paste("tolerance_step",
kstep, sep = ""), row.names = F, col.names = F, quote = F)
write.table(cbind(tab_weight2, simul_below_tol), file = paste("output_step",
kstep, sep = ""), row.names = F, col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step",
kstep, sep = ""), row.names = F, col.names = F, quote = F)
intermediary_steps[[kstep]] = list(n_simul_tot = as.numeric(seed_count -
seed_count_ini), tol_step = as.numeric(new_tolerance), posterior = as.matrix(cbind(tab_weight2,
simul_below_tol)))
}
if (progress_bar) {
print(paste("step ", kstep, " completed - tol =", new_tolerance, sep = ""))
}
}
stopCluster(cl)
list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]), stats = as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), weights = tab_weight2/sum(tab_weight2),
stats_normalization = as.numeric(sd_simul), epsilon = max(.compute_dist(summary_stat_target,
as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam + nstat)]),
sd_simul, dist_weights=dist_weights)), nsim = (seed_count - seed_count_ini), computime = as.numeric(difftime(Sys.time(),
start, units = "secs")))
final_res = NULL
if (verbose == TRUE) {
final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]),
stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam +
nstat)]), weights = tab_weight2/sum(tab_weight2), stats_normalization = as.numeric(sd_simul),
epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
seed_count_ini), computime = as.numeric(difftime(Sys.time(), start,
units = "secs")), intermediary = intermediary_steps)
} else {
final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]),
stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam +
nstat)]), weights = tab_weight2/sum(tab_weight2), stats_normalization = as.numeric(sd_simul),
epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
seed_count_ini), computime = as.numeric(difftime(Sys.time(), start,
units = "secs")))
}
final_res
}
## function to sample in the prior distributions using a Latin Hypercube sample
.ABC_rejection_lhs_cluster <- function(model, prior, prior_test, nb_simul, seed_count,
n_cluster) {
# library(lhs)
cl <- makeCluster(getOption("cl.cores", n_cluster))
tab_simul_summarystat = NULL
tab_param = NULL
list_param = list(NULL)
npar = floor(nb_simul/(100 * n_cluster))
n_end = nb_simul - (npar * 100 * n_cluster)
nparam = length(prior)
l = length(prior)
random_tab = NULL
all_unif_prior = .all_unif(prior)
if (all_unif_prior) {
random_tab = randomLHS(nb_simul, nparam)
}
if (npar > 0) {
for (irun in 1:npar) {
for (i in 1:(100 * n_cluster)) {
param = array(0, l)
if (!all_unif_prior) {
param = .sample_prior(prior, prior_test)
} else {
for (j in 1:l) {
param[j] = as.numeric(prior[[j]]$sampleArgs[2]) + (as.numeric(prior[[j]]$sampleArgs[3]) -
as.numeric(prior[[j]]$sampleArgs[2])) * random_tab[((irun -
1) * 100 * n_cluster + i), j]
}
}
# if (use_seed) # NB: we force the value use_seed=TRUE
param = c((seed_count + i), param)
list_param[[i]] = param
tab_param = rbind(tab_param, param[2:(l + 1)])
}
seed_count = seed_count + (n_cluster * 100)
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:(100 * n_cluster)) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
}
}
}
if (n_end > 0) {
# stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
list_param = list(NULL)
for (i in 1:n_end) {
param = array(0, l)
if (!all_unif_prior) {
param = .sample_prior(prior, prior_test)
} else {
for (j in 1:l) {
param[j] = as.numeric(prior[[j]]$sampleArgs[2]) + (as.numeric(prior[[j]]$sampleArgs[3]) -
as.numeric(prior[[j]]$sampleArgs[2])) * random_tab[(npar * 100 *
n_cluster + i), j]
}
}
# if (use_seed) # NB: we force the value use_seed=TRUE
param = c((seed_count + i), param)
list_param[[i]] = param
tab_param = rbind(tab_param, param[2:(l + 1)])
}
seed_count = seed_count + n_end
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:n_end) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
}
stopCluster(cl)
} else {
stopCluster(cl)
}
options(scipen = 0)
cbind(tab_param, tab_simul_summarystat)
}
## function to perform ABC simulations from a non-uniform prior (derived from a
## set of particles)
.ABC_launcher_not_uniformc_cluster <- function(model, prior, param_previous_step,
tab_weight, nb_simul, seed_count, inside_prior, n_cluster, max_pick=10000) {
tab_simul_summarystat = NULL
tab_param = NULL
k_acc = 0
cl <- makeCluster(getOption("cl.cores", n_cluster))
list_param = list(NULL)
npar = floor(nb_simul/(100 * n_cluster))
n_end = nb_simul - (npar * 100 * n_cluster)
if (npar > 0) {
for (irun in 1:npar) {
for (i in 1:(100 * n_cluster)) {
l = dim(param_previous_step)[2]
counter = 0
repeat {
counter = counter + 1
k_acc = k_acc + 1
# pick a particle
param_picked = .particle_pick(param_previous_step, tab_weight)
# move it
# only variable parameters are moved, computation of a WEIGHTED variance
param_moved = .move_particle(as.numeric(param_picked), 2*cov.wt(as.matrix(as.matrix(param_previous_step)),as.vector(tab_weight))$cov)
if ((!inside_prior) || (.is_included(param_moved, prior)) || (counter >= max_pick)) {
break
}
}
if (counter == max_pick) {
stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
}
param = param_previous_step[1, ]
param = param_moved
param = c((seed_count + i), param)
list_param[[i]] = param
tab_param = rbind(tab_param, param[2:(l + 1)])
}
seed_count = seed_count + n_cluster * 100
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:(100 * n_cluster)) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
}
}
}
if (n_end > 0) {
# stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
list_param = list(NULL)
for (i in 1:n_end) {
l = dim(param_previous_step)[2]
counter = 0
repeat {
k_acc = k_acc + 1
counter = counter + 1
# pick a particle
param_picked = .particle_pick(param_previous_step, tab_weight)
# move it
param_moved = .move_particle(as.numeric(param_picked), 2 * cov.wt(as.matrix(as.matrix(param_previous_step)),
as.vector(tab_weight))$cov) # only variable parameters are moved, computation of a WEIGHTED variance
if ((!inside_prior) || (.is_included(param_moved, prior)) || (counter >= max_pick)) {
break
}
}
if (counter == max_pick) {
stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
}
param = param_previous_step[1, ]
param = param_moved
param = c((seed_count + i), param)
list_param[[i]] = param
tab_param = rbind(tab_param, param[2:(l + 1)])
}
seed_count = seed_count + n_end
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:n_end) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
}
}
stopCluster(cl)
list(cbind(tab_param, tab_simul_summarystat), nb_simul/k_acc)
}
## function to perform ABC simulations from a non-uniform prior and with
## unidimensional jumps
.ABC_launcher_not_uniformc_uni_cluster <- function(model, prior, param_previous_step,
tab_weight, nb_simul, seed_count, inside_prior, n_cluster, max_pick=10000) {
tab_simul_summarystat = NULL
tab_param = NULL
k_acc = 0
cl <- makeCluster(getOption("cl.cores", n_cluster))
list_param = list(NULL)
npar = floor(nb_simul/(100 * n_cluster))
n_end = nb_simul - (npar * 100 * n_cluster)
l = dim(param_previous_step)[2]
l_array = dim(param_previous_step)[2]
if (is.null(l_array)) {
l_array = 1
}
sd_array = array(1, l_array)
covmat = 2 * cov.wt(as.matrix(as.matrix(param_previous_step)), as.vector(tab_weight))$cov # computation of a WEIGHTED variance
for (j in 1:l_array) {
sd_array[j] = sqrt(covmat[j, j])
}
if (npar > 0) {
for (irun in 1:npar) {
for (i in 1:(100 * n_cluster)) {
if (!inside_prior) {
k_acc = k_acc + 1
# pick a particle
param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)),
tab_weight)
# move it
param_moved = .move_particle_uni(as.numeric(param_picked), sd_array) # only variable parameters are moved
} else {
test = FALSE
counter = 0
while ((!test) && (counter < max_pick)) {
k_acc = k_acc + 1
counter = counter + 1
# pick a particle
param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)),
tab_weight)
# move it
param_moved = .move_particle_uni(as.numeric(param_picked), sd_array) # only variable parameters are moved
test = .is_included(param_moved, prior)
}
if (counter == max_pick) {
stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
}
}
param = param_previous_step[1, ]
param = param_moved
param = c((seed_count + i), param)
list_param[[i]] = param
tab_param = rbind(tab_param, param[2:(l + 1)])
}
seed_count = seed_count + 100 * n_cluster
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:(100 * n_cluster)) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
}
}
}
if (n_end > 0) {
# stopCluster(cl) cl <- makeCluster(getOption('cl.cores', 1))
list_param = list(NULL)
for (i in 1:n_end) {
if (!inside_prior) {
k_acc = k_acc + 1
# pick a particle
param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)),
tab_weight)
# move it
param_moved = .move_particle_uni(as.numeric(param_picked), sd_array) # only variable parameters are moved
} else {
test = FALSE
counter = 0
while ((!test) && (counter < max_pick)) {
counter = counter + 1
k_acc = k_acc + 1
# pick a particle
param_picked = .particle_pick(as.matrix(as.matrix(param_previous_step)),
tab_weight)
# move it
param_moved = .move_particle_uni(as.numeric(param_picked), sd_array) # only variable parameters are moved
test = .is_included(param_moved, prior)
}
if (counter == max_pick) {
stop("The proposal jumps outside of the prior distribution too often - consider using the option 'inside_prior=FALSE' or enlarging the prior distribution")
}
}
param = param_previous_step[1, ]
param = param_moved
param = c((seed_count + i), param)
list_param[[i]] = param
tab_param = rbind(tab_param, param[2:(l + 1)])
}
seed_count = seed_count + n_end
list_simul_summarystat = parLapplyLB(cl, list_param, model)
for (i in 1:n_end) {
tab_simul_summarystat = rbind(tab_simul_summarystat, as.numeric(list_simul_summarystat[[i]]))
}
stopCluster(cl)
} else {
stopCluster(cl)
}
list(cbind(tab_param, tab_simul_summarystat), nb_simul/k_acc)
}
## sequential algorithm of Lenormand et al. 2012
.ABC_Lenormand_cluster <- function(model, prior, prior_test, nb_simul, summary_stat_target,
n_cluster, verbose, alpha = 0.5, p_acc_min = 0.05, dist_weights=NULL, seed_count = 0, inside_prior = TRUE,
progress_bar = FALSE, max_pick=10000) {
## checking errors in the inputs
if (!is.vector(alpha))
stop("'alpha' has to be a number.")
if (length(alpha) > 1)
stop("'alpha' has to be a number.")
if (alpha <= 0)
stop("'alpha' has to be between 0 and 1.")
if (alpha >= 1)
stop("'alpha' has to be between 0 and 1.")
if (!is.vector(p_acc_min))
stop("'p_acc_min' has to be a number.")
if (length(p_acc_min) > 1)
stop("'p_acc_min' has to be a number.")
if (p_acc_min <= 0)
stop("'p_acc_min' has to be between 0 and 1.")
if (p_acc_min >= 1)
stop("'p_acc_min' has to be between 0 and 1.")
if (!is.vector(seed_count))
stop("'seed_count' has to be a number.")
if (length(seed_count) > 1)
stop("'seed_count' has to be a number.")
if (seed_count < 0)
stop("'seed_count' has to be a positive number.")
seed_count = floor(seed_count)
if (!is.logical(inside_prior))
stop("'inside_prior' has to be boolean.")
start = Sys.time()
if (progress_bar) {
print(" ------ Lenormand et al. (2012)'s algorithm ------")
}
seed_count_ini = seed_count
nparam = length(prior)
nstat = length(summary_stat_target)
if (!.all_unif(prior)) {
stop("Prior distributions must be uniform to use the Lenormand et al. (2012)'s algorithm.")
}
n_alpha = ceiling(nb_simul * alpha)
## step 1 ABC rejection step with LHS
tab_ini = .ABC_rejection_lhs_cluster(model, prior, prior_test, nb_simul, seed_count,
n_cluster)
# initially, weights are equal
tab_weight = array(1, n_alpha)
if (verbose == TRUE) {
write.table(as.matrix(cbind(tab_weight, tab_ini)), file = "model_step1",
row.names = F, col.names = F, quote = F)
}
seed_count = seed_count + nb_simul
# determination of the normalization constants in each dimension associated to
# each summary statistic, this normalization will not change during all the
# algorithm
sd_simul = sapply(as.data.frame(tab_ini[, (nparam + 1):(nparam + nstat)]), sd,
na.rm = TRUE)
# selection of the alpha quantile closest simulations
simul_below_tol = NULL
simul_below_tol = rbind(simul_below_tol, .selec_simul_alpha(summary_stat_target,
tab_ini[, 1:nparam], tab_ini[, (nparam + 1):(nparam + nstat)], sd_simul,
alpha, dist_weights=dist_weights))
simul_below_tol = simul_below_tol[1:n_alpha, ] # to be sure that there are not two or more simulations at a distance equal to the tolerance determined by the quantile
tab_dist = .compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
tol_next = max(tab_dist)
intermediary_steps = list(NULL)
if (verbose == TRUE) {
write.table(cbind(tab_weight, simul_below_tol), file = "output_step1", row.names = F,
col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = "n_simul_tot_step1",
row.names = F, col.names = F, quote = F)
write.table(as.numeric(tol_next), file = "tolerance_step1", row.names = F,
col.names = F, quote = F)
intermediary_steps[[1]] = list(n_simul_tot = as.numeric(seed_count - seed_count_ini),
tol_step = as.numeric(tol_next), posterior = as.matrix(cbind(tab_weight,
simul_below_tol)))
}
if (progress_bar) {
print("step 1 completed")
}
## following steps
p_acc = p_acc_min + 1
nb_simul_step = nb_simul - n_alpha
it = 1
while (p_acc > p_acc_min) {
it = it + 1
simul_below_tol2 = NULL
tab_inic = .ABC_launcher_not_uniformc_cluster(model, prior, as.matrix(as.matrix(simul_below_tol)[,
1:nparam]), tab_weight/sum(tab_weight), nb_simul_step, seed_count, inside_prior,
n_cluster, max_pick)
tab_ini = as.matrix(tab_inic[[1]])
tab_ini = as.numeric(tab_ini)
dim(tab_ini) = c(nb_simul_step, (nparam + nstat))
seed_count = seed_count + nb_simul_step
if (!inside_prior) {
tab_weight2 = .compute_weightb(as.matrix(as.matrix(as.matrix(tab_ini)[,
1:nparam])), as.matrix(as.matrix(as.matrix(simul_below_tol)[, 1:nparam])),
tab_weight/sum(tab_weight), prior)
} else {
tab_weight2 = tab_inic[[2]] * (.compute_weightb(as.matrix(as.matrix(as.matrix(tab_ini)[,
1:nparam])), as.matrix(as.matrix(as.matrix(simul_below_tol)[, 1:nparam])),
tab_weight/sum(tab_weight), prior))
}
if (verbose == TRUE) {
write.table(as.matrix(cbind(tab_weight2, tab_ini)), file = paste("model_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
}
simul_below_tol2 = rbind(as.matrix(simul_below_tol), as.matrix(tab_ini))
tab_weight = c(tab_weight, tab_weight2)
tab_dist2 = .compute_dist(summary_stat_target, as.matrix(as.matrix(tab_ini)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)
p_acc = length(tab_dist2[!is.na(tab_dist2) & tab_dist2 <= tol_next])/nb_simul_step
tab_dist = c(tab_dist, tab_dist2)
tol_next = sort(tab_dist)[n_alpha]
simul_below_tol2 = simul_below_tol2[!is.na(tab_dist) & tab_dist <= tol_next,
]
tab_weight = tab_weight[!is.na(tab_dist) & tab_dist <= tol_next]
tab_weight = tab_weight[1:n_alpha]
tab_dist = tab_dist[!is.na(tab_dist) & tab_dist <= tol_next]
odist = order(tab_dist, decreasing = FALSE)[1:n_alpha]
tab_dist_new = tab_dist
simul_below_tol = matrix(0, n_alpha, (nparam + nstat))
for (i1 in 1:n_alpha) {
tab_dist_new[i1] = tab_dist[odist[i1]]
for (i2 in 1:(nparam + nstat)) {
simul_below_tol[i1, i2] = as.numeric(simul_below_tol2[odist[i1],
i2])
}
}
tab_dist = tab_dist_new[1:n_alpha]
if (verbose == TRUE) {
write.table(as.matrix(cbind(tab_weight, simul_below_tol)), file = paste("output_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
write.table(as.numeric(seed_count - seed_count_ini), file = paste("n_simul_tot_step",
it, sep = ""), row.names = F, col.names = F, quote = F)
write.table(as.numeric(p_acc), file = paste("p_acc_step", it, sep = ""),
row.names = F, col.names = F, quote = F)
write.table(as.numeric(tol_next), file = paste("tolerance_step", it,
sep = ""), row.names = F, col.names = F, quote = F)
intermediary_steps[[it]] = list(n_simul_tot = as.numeric(seed_count -
seed_count_ini), tol_step = as.numeric(tol_next), p_acc = as.numeric(p_acc),
posterior = as.matrix(cbind(tab_weight, simul_below_tol)))
}
if (progress_bar) {
print(paste("step ", it, " completed - p_acc = ", p_acc, sep = ""))
}
}
final_res = NULL
if (verbose == TRUE) {
final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]),
stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam +
nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul),
epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
seed_count_ini), computime = as.numeric(difftime(Sys.time(), start,
units = "secs")), intermediary = intermediary_steps)
} else {
final_res = list(param = as.matrix(as.matrix(simul_below_tol)[, 1:nparam]),
stats = as.matrix(as.matrix(simul_below_tol)[, (nparam + 1):(nparam +
nstat)]), weights = tab_weight/sum(tab_weight), stats_normalization = as.numeric(sd_simul),
epsilon = max(.compute_dist(summary_stat_target, as.matrix(as.matrix(simul_below_tol)[,
(nparam + 1):(nparam + nstat)]), sd_simul, dist_weights=dist_weights)), nsim = (seed_count -
seed_count_ini), computime = as.numeric(difftime(Sys.time(), start,
units = "secs")))
}
final_res
}
## general function regrouping the different sequential algorithms [Beaumont et
## al., 2009] Beaumont, M. A., Cornuet, J., Marin, J., and Robert, C. P. (2009).
## Adaptive approximate Bayesian computation. Biometrika,96(4):983-990.
## [Drovandi & Pettitt 2011] Drovandi, C. C. and Pettitt, A. N. (2011).
## Estimation of parameters for macroparasite population evolution using
## approximate Bayesian computation. Biometrics, 67(1):225-233. [Del Moral et al.
## 2012] Del Moral, P., Doucet, A., and Jasra, A. (2012). An adaptive sequential
## Monte Carlo method for approximate Bayesian computation, Statistics and
## Computing., 22(5):1009-1020. [Lenormand et al. 2012] Lenormand, M., Jabot, F.,
## Deffuant G. (2012). Adaptive approximate Bayesian computation for complex
## models, submitted to Comput. Stat. )
.ABC_sequential_cluster <- function(method, model, prior, prior_test, nb_simul, summary_stat_target,
n_cluster, use_seed, verbose, dist_weights=NULL, ...) {
if (use_seed == FALSE) {
stop("For parallel implementations, you must specify the option 'use_seed=TRUE' and modify your model accordingly - see the package's vignette for more details.")
}
options(scipen = 50)
return(switch(EXPR = method, Beaumont = .ABC_PMC_cluster(model, prior, prior_test,
nb_simul, summary_stat_target, n_cluster, verbose, dist_weights=dist_weights , ...), Drovandi = .ABC_Drovandi_cluster(model,
prior, nb_simul, summary_stat_target, n_cluster, verbose, dist_weights=dist_weights, ...), Delmoral = .ABC_Delmoral_cluster(model,
prior, prior_test, nb_simul, summary_stat_target, n_cluster, verbose, dist_weights=dist_weights, ...),
Lenormand = .ABC_Lenormand_cluster(model, prior, prior_test, nb_simul, summary_stat_target,
n_cluster, verbose, dist_weights=dist_weights, ...)))
options(scipen = 0)
}
## ABC-MCMC algorithm of Marjoram et al. 2003 with automatic determination of the
## tolerance and proposal range following Wegmann et al. 2009
.ABC_MCMC2_cluster <- function(model, prior, prior_test, n_obs, n_between_sampling,
summary_stat_target, n_cluster, verbose, n_calibration = 10000, tolerance_quantile = 0.01,
proposal_phi = 1, dist_weights=NULL, seed_count = 0, max_pick=100000) {
## checking errors in the inputs
if (!is.vector(n_calibration))
stop("'n_calibration' has to be a number.")
if (length(n_calibration) > 1)
stop("'n_calibration' has to be a number.")
if (n_calibration < 1)
stop("'n_calibration' has to be positive.")
n_calibration = floor(n_calibration)
if (!is.vector(tolerance_quantile))
stop("'tolerance_quantile' has to be a number.")
if (length(tolerance_quantile) > 1)
stop("'tolerance_quantile' has to be a number.")
if (tolerance_quantile <= 0)
stop("'tolerance_quantile' has to be between 0 and 1.")
if (tolerance_quantile >= 1)
stop("'tolerance_quantile' has to be between 0 and 1.")
if (!is.vector(proposal_phi))
stop("'proposal_phi' has to be a number.")
if (length(proposal_phi) > 1)
stop("'proposal_phi' has to be a number.")
if (proposal_phi <= 0)
stop("'proposal_phi' has to be positive.")
if (!is.vector(seed_count))
stop("'seed_count' has to be a number.")
if (length(seed_count) > 1)
stop("'seed_count' has to be a number.")
if (seed_count < 0)
stop("'seed_count' has to be a positive number.")
seed_count = floor(seed_count)
start = Sys.time()
if (verbose) {
print(" ------ Marjoram et al. (2003)'s algorithm with modifications drawn from Wegmann et al. (2009) related to automatization ------")
}
seed_count_ini = seed_count
nparam = length(prior)
nstat = length(summary_stat_target)
tab_simul_summary_stat = NULL
tab_param = NULL
# initial draw of a particle
initial = .ABC_rejection_internal_cluster(model, prior, prior_test, n_calibration,
seed_count, n_cluster)
seed_count = seed_count + n_calibration
tab_param = as.matrix(as.matrix(initial)[, 1:nparam])
tab_simul_summary_stat = as.matrix(initial[, (nparam + 1):(nparam + nstat)])
sd_simul = array(0, nstat)
for (i in 1:nstat) {
sd_simul[i] = sd(tab_simul_summary_stat[, i])
}
simuldist = .compute_dist(summary_stat_target, tab_simul_summary_stat, sd_simul, dist_weights=dist_weights)
ord_sim = order(simuldist, decreasing = F)
nmax = ceiling(tolerance_quantile * n_calibration)
dist_max = simuldist[(ord_sim[nmax])]
tab_param = as.matrix(tab_param)[(ord_sim[1:nmax]), ]
proposal_range = vector(mode = "numeric", length = nparam)
for (i in 1:nparam) {
proposal_range[i] = sd(as.matrix(tab_param)[, i]) * proposal_phi/2
}
n_ini = sample(nmax, 1)
tab_simul_ini = as.numeric(tab_simul_summary_stat[(ord_sim[n_ini]), ])
dist_ini = simuldist[(ord_sim[n_ini])]
param_ini = as.matrix(tab_param)[n_ini, ]
if (verbose == TRUE) {
write.table((seed_count - seed_count_ini), file = "n_simul_tot_step1", row.names = F,
col.names = F, quote = F)
write.table(NULL, file = "output_mcmc", row.names = F, col.names = F, quote = F)
print("initial calibration performed ")
}
# chain run
tab_param = param_ini
tab_simul_summary_stat = tab_simul_ini
tab_dist = as.numeric(dist_ini)
if (verbose == TRUE) {
intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
}
for (is in 2:n_obs) {
for (i in 1:n_between_sampling) {
param = .move_particle_uni_uniform(as.numeric(param_ini), proposal_range,
prior, max_pick)
param = c((seed_count + i), param)
simul_summary_stat = model(param)
param = param[2:(nparam + 1)]
dist_simul = .compute_dist(summary_stat_target, as.numeric(simul_summary_stat),
sd_simul, dist_weights=dist_weights)
if (dist_simul < dist_max) {
param_ini = param
tab_simul_ini = as.numeric(simul_summary_stat)
dist_ini = dist_simul
}
}
seed_count = seed_count + n_between_sampling
tab_simul_summary_stat = rbind(tab_simul_summary_stat, tab_simul_ini)
tab_param = rbind(tab_param, as.numeric(param_ini))
tab_dist = rbind(tab_dist, as.numeric(dist_ini))
if (verbose == TRUE) {
intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
if (is%%100 == 0) {
print(paste(is, " ", sep = ""))
}
}
}
tab_param2 = matrix(0, dim(tab_param)[1], dim(tab_param)[2])
for (i in 1:dim(tab_param)[1]) {
for (j in 1:dim(tab_param)[2]) {
tab_param2[i, j] = tab_param[i, j]
}
}
tab_simul_summary_stat2 = matrix(0, dim(tab_simul_summary_stat)[1], dim(tab_simul_summary_stat)[2])
for (i in 1:dim(tab_simul_summary_stat)[1]) {
for (j in 1:dim(tab_simul_summary_stat)[2]) {
tab_simul_summary_stat2[i, j] = tab_simul_summary_stat[i, j]
}
}
tab_dist2 = array(0, length(tab_dist))
for (i in 1:length(tab_dist)) {
tab_dist2[i] = tab_dist[i]
}
list(param = as.matrix(tab_param2), stats = as.matrix(tab_simul_summary_stat2),
dist = tab_dist2, stats_normalization = as.numeric(sd_simul), epsilon = max(tab_dist),
nsim = (seed_count - seed_count_ini), n_between_sampling = n_between_sampling,
computime = as.numeric(difftime(Sys.time(), start, units = "secs")))
}
## ABC-MCMC algorithm of Wegmann et al. 2009 - the PLS step is drawn from the
## manual of ABCtoolbox (figure 9) - NB: for consistency with ABCtoolbox, AM11-12
## are not implemented in the algorithm
.ABC_MCMC3_cluster <- function(model, prior, prior_test, n_obs, n_between_sampling,
summary_stat_target, n_cluster, verbose, n_calibration = 10000, tolerance_quantile = 0.01,
proposal_phi = 1, numcomp = 0, dist_weights=NULL, seed_count = 0, max_pick=100000) {
## checking errors in the inputs
if (!is.vector(n_calibration))
stop("'n_calibration' has to be a number.")
if (length(n_calibration) > 1)
stop("'n_calibration' has to be a number.")
if (n_calibration < 1)
stop("'n_calibration' has to be positive.")
n_calibration = floor(n_calibration)
if (!is.vector(tolerance_quantile))
stop("'tolerance_quantile' has to be a number.")
if (length(tolerance_quantile) > 1)
stop("'tolerance_quantile' has to be a number.")
if (tolerance_quantile <= 0)
stop("'tolerance_quantile' has to be between 0 and 1.")
if (tolerance_quantile >= 1)
stop("'tolerance_quantile' has to be between 0 and 1.")
if (!is.vector(proposal_phi))
stop("'proposal_phi' has to be a number.")
if (length(proposal_phi) > 1)
stop("'proposal_phi' has to be a number.")
if (proposal_phi <= 0)
stop("'proposal_phi' has to be positive.")
if (!is.vector(numcomp))
stop("'numcomp' has to be a number.")
if (length(numcomp) > 1)
stop("'numcomp' has to be a number.")
if (numcomp < 0)
stop("'numcomp' has to be positive.")
if (numcomp > length(summary_stat_target))
stop("'numcomp' has to smaller or equal to the number of summary statistics.")
numcomp = floor(numcomp)
if (!is.vector(seed_count))
stop("'seed_count' has to be a number.")
if (length(seed_count) > 1)
stop("'seed_count' has to be a number.")
if (seed_count < 0)
stop("'seed_count' has to be a positive number.")
seed_count = floor(seed_count)
start = Sys.time()
if (verbose) {
print(" ------ Wegmann et al. (2009)'s algorithm ------")
}
# library(pls) library(MASS) AM1
seed_count_ini = seed_count
nparam = length(prior)
nstat = length(summary_stat_target)
if (nstat <= 1) {
stop("A single summary statistic is used, use the method 'Marjoram' instead")
}
if (numcomp == 0) {
numcomp = nstat
}
tab_simul_summary_stat = NULL
tab_param = NULL
if (length(prior) <= 1) {
stop("A single parameter is varying, use the method 'Marjoram' instead")
}
# initial draw of a particle
initial = .ABC_rejection_internal_cluster(model, prior, prior_test, nb_simul = n_calibration,
seed_count, n_cluster)
seed_count = seed_count + n_calibration
tab_param = as.matrix(as.matrix(initial)[, 1:nparam])
tab_simul_summary_stat = as.matrix(initial[, (nparam + 1):(nparam + nstat)])
if (verbose == TRUE) {
write.table((seed_count - seed_count_ini), file = "n_simul_tot_step1", row.names = F,
col.names = F, quote = F)
write.table(NULL, file = "output_mcmc", row.names = F, col.names = F, quote = F)
}
## AM2: PLS step print('AM2 ') standardize the params
sparam = as.matrix(tab_param)
ls = dim(sparam)[2]
for (i in 1:ls) {
sparam[, i] = (sparam[, i] - mean(sparam[, i]))/sd(sparam[, i])
}
# force stat in [1,2]
myMax <- c()
myMin <- c()
lambda <- c()
myGM <- c()
stat = tab_simul_summary_stat
# print('stat 1 ') print(stat)
summary_stat_targ = summary_stat_target
for (i in 1:nstat) {
myMax <- c(myMax, max(stat[, i]))
myMin <- c(myMin, min(stat[, i]))
stat[, i] = 1 + (stat[, i] - myMin[i])/(myMax[i] - myMin[i])
summary_stat_targ[i] = 1 + (summary_stat_targ[i] - myMin[i])/(myMax[i] -
myMin[i])
}
# print('stat 2 ') print(stat) transform statistics via boxcox
dmat = matrix(0, n_calibration, (ls + 1))
for (i in 1:nstat) {
d = cbind(as.vector(as.numeric(stat[, i])), as.matrix(sparam))
for (i1 in 1:n_calibration) {
for (i2 in 1:(ls + 1)) {
dmat[i1, i2] = as.numeric(d[i1, i2])
}
}
save(dmat, file = "dmat.RData")
load("dmat.RData", .GlobalEnv)
file.remove("dmat.RData")
mylm <- lm(as.formula(as.data.frame(dmat)), data = as.data.frame(dmat))
# mylm<-lm(as.formula(as.data.frame(dmat))) mylm<-lm(stat[,i]~as.matrix(sparam))
myboxcox <- boxcox(mylm, lambda = seq(-20, 100, 1/10), interp = T, eps = 1/50,
plotit = FALSE)
lambda <- c(lambda, myboxcox$x[myboxcox$y == max(myboxcox$y)])
myGM <- c(myGM, exp(mean(log(stat[, i]))))
}
# standardize the BC-stat
myBCMeans <- c()
myBCSDs <- c()
for (i in 1:nstat) {
stat[, i] <- ((stat[, i]^lambda[i]) - 1)/(lambda[i] * (myGM[i]^(lambda[i] -
1)))
summary_stat_targ[i] <- ((summary_stat_targ[i]^lambda[i]) - 1)/(lambda[i] *
(myGM[i]^(lambda[i] - 1)))
myBCSDs <- c(myBCSDs, sd(stat[, i]))
myBCMeans <- c(myBCMeans, mean(stat[, i]))
stat[, i] <- (stat[, i] - myBCMeans[i])/myBCSDs[i]
summary_stat_targ[i] <- (summary_stat_targ[i] - myBCMeans[i])/myBCSDs[i]
}
# perform pls
myPlsr <- plsr(as.matrix(sparam) ~ as.matrix(stat), scale = F, ncomp = numcomp,
validation = "LOO")
pls_transformation = matrix(0, numcomp, nstat)
for (i in 1:numcomp) {
pls_transformation[i, ] = as.numeric(myPlsr$loadings[, i])
}
## AM3 print('AM3 ')
summary_stat_targ = t(pls_transformation %*% as.vector(summary_stat_targ))
stat_pls = t(pls_transformation %*% t(stat))
simuldist = .compute_dist(summary_stat_targ, stat_pls, rep(1, numcomp), dist_weights=dist_weights)
## AM4 print('AM4 ')
ord_sim = order(simuldist, decreasing = F)
nmax = ceiling(tolerance_quantile * n_calibration)
dist_max = simuldist[(ord_sim[nmax])]
tab_param = as.matrix(tab_param)[(ord_sim[1:nmax]), ]
proposal_range = vector(mode = "numeric", length = nparam)
for (i in 1:nparam) {
proposal_range[i] = sd(tab_param[, i]) * proposal_phi/2
}
if (verbose) {
print("initial calibration performed ")
}
## AM5: chain run print('AM5 ')
n_ini = sample(nmax, 1)
tab_simul_ini = as.numeric(tab_simul_summary_stat[(ord_sim[n_ini]), ])
param_ini = tab_param[n_ini, ]
tab_param = param_ini
tab_simul_summary_stat = tab_simul_ini
dist_ini = simuldist[(ord_sim[n_ini])]
tab_dist = as.numeric(dist_ini)
if (verbose == TRUE) {
intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
}
for (is in 2:n_obs) {
for (i in 1:n_between_sampling) {
## AM6 print('AM6 ')
param = .move_particle_uni_uniform(as.numeric(param_ini), proposal_range,
prior, max_pick)
param = c((seed_count + i), param)
## AM7 print('AM7 ')
simul_summary_stat = model(param)
param = param[2:(nparam + 1)]
simul_summary_stat_output = simul_summary_stat
for (ii in 1:nstat) {
simul_summary_stat[ii] = 1 + (simul_summary_stat[ii] - myMin[ii])/(myMax[ii] -
myMin[ii])
}
for (ii in 1:nstat) {
simul_summary_stat[ii] <- ((simul_summary_stat[ii]^lambda[ii]) -
1)/(lambda[ii] * (myGM[ii]^(lambda[ii] - 1)))
simul_summary_stat[ii] <- (simul_summary_stat[ii] - myBCMeans[ii])/myBCSDs[ii]
}
simul_summary_stat = as.matrix(simul_summary_stat)
dim(simul_summary_stat) <- c(nstat, 1)
simul_summary_stat = t(pls_transformation %*% simul_summary_stat)
dist_simul = .compute_dist(summary_stat_targ, as.numeric(simul_summary_stat),
rep(1, numcomp), dist_weights=dist_weights)
## AM8-9 print('AM8-9 ')
if (dist_simul < dist_max) {
param_ini = param
tab_simul_ini = as.numeric(simul_summary_stat_output)
dist_ini = dist_simul
}
}
seed_count = seed_count + n_between_sampling
tab_simul_summary_stat = rbind(tab_simul_summary_stat, tab_simul_ini)
tab_param = rbind(tab_param, as.numeric(param_ini))
tab_dist = rbind(tab_dist, as.numeric(dist_ini))
if (verbose == TRUE) {
intermed = c(as.numeric(param_ini), tab_simul_ini, as.numeric(dist_ini))
write(intermed, file = "output_mcmc", ncolumns = length(intermed), append = T)
if (is%%100 == 0) {
print(paste(is, " ", sep = ""))
}
}
}
tab_param2 = matrix(0, dim(tab_param)[1], dim(tab_param)[2])
for (i in 1:dim(tab_param)[1]) {
for (j in 1:dim(tab_param)[2]) {
tab_param2[i, j] = tab_param[i, j]
}
}
tab_simul_summary_stat2 = matrix(0, dim(tab_simul_summary_stat)[1], dim(tab_simul_summary_stat)[2])
for (i in 1:dim(tab_simul_summary_stat)[1]) {
for (j in 1:dim(tab_simul_summary_stat)[2]) {
tab_simul_summary_stat2[i, j] = tab_simul_summary_stat[i, j]
}
}
tab_dist2 = array(0, length(tab_dist))
for (i in 1:length(tab_dist)) {
tab_dist2[i] = tab_dist[i]
}
list(param = as.matrix(tab_param2), stats = as.matrix(tab_simul_summary_stat2),
dist = tab_dist2, epsilon = max(tab_dist), nsim = (seed_count - seed_count_ini),
n_between_sampling = n_between_sampling, min_stats = myMin, max_stats = myMax,
lambda = lambda, geometric_mean = myGM, boxcox_mean = myBCMeans, boxcox_sd = myBCSDs,
pls_transform = pls_transformation, n_component = numcomp, computime = as.numeric(difftime(Sys.time(),
start, units = "secs")))
}
## FUNCTION ABC_mcmc: ABC coupled to MCMC (Marjoram et al. 2003, Wegmann et al.
## 2009)
.ABC_mcmc_cluster <- function(method, model, prior, prior_test, n_obs, n_between_sampling,
summary_stat_target, n_cluster = 1, use_seed, verbose, dist_weights=NULL, ...) {
if (use_seed == FALSE) {
stop("For parallel implementations, you must specify the option 'use_seed=TRUE' and modify your model accordingly - see the package's vignette for more details.")
}
options(scipen = 50)
# library(parallel) Note that we do not consider the original Marjoram's
# algortithm, which is not prone to parallel computing. (no calibration step)
return(switch(EXPR = method, Marjoram = .ABC_MCMC2_cluster(model, prior, prior_test,
n_obs, n_between_sampling, summary_stat_target, n_cluster, verbose, dist_weights=dist_weights, ...),
Wegmann = .ABC_MCMC3_cluster(model, prior, prior_test, n_obs, n_between_sampling,
summary_stat_target, n_cluster, verbose, dist_weights=dist_weights, ...)))
options(scipen = 0)
}
######################### Utilities functions Progress Bar
.progressBar <- function(min = 0, max = 1, initial = 0, text = "", char = "=", width = NA,
title, label, style = 1, file = "") {
if (!identical(file, "") && !(inherits(file, "connection") && isOpen(file)))
stop("\"file\" must be \"\" or an open connection object")
if (!style %in% 1L:3L)
style <- 1
.val <- initial
.killed <- FALSE
.nb <- 0L
.pc <- -1L
nw <- nchar(char, "w")
if (is.na(width)) {
width <- getOption("width")
if (style == 3L)
width <- width - 10L
width <- trunc(width/nw)
}
if (max <= min)
stop("must have max > min")
up <- function(value, text) {
if (!is.finite(value) || value < min || value > max)
return()
.val <<- value
nb <- round(width * (value - min)/(max - min))
pc <- round(100 * (value - min)/(max - min))
if (nb == .nb && pc == .pc)
return()
cat(paste(c("\r |", rep.int(" ", nw * width + 6)), collapse = ""), file = file)
cat(paste(c("\r |", rep.int(char, nb), rep.int(" ", nw * (width - nb)),
sprintf("| %3d%% %s", pc, text)), collapse = ""), file = file)
flush.console()
.nb <<- nb
.pc <<- pc
}
getVal <- function() .val
kill <- function() if (!.killed) {
cat("\n", file = file)
flush.console()
.killed <<- TRUE
}
up(initial, text)
structure(list(getVal = getVal, up = up, kill = kill), class = "txtProgressBar")
}
.updateProgressBar <- function(pb, value, text = "") {
if (!inherits(pb, "txtProgressBar"))
stop("'pb' is not from class 'txtProgressBar'")
oldval <- pb$getVal()
pb$up(value, text)
invisible(oldval)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.