Nothing
eqnormCensored <-
function (x, censored, censoring.side = "left", p = 0.5, method = "mle",
ci = FALSE, ci.method = "exact.for.complete", ci.type = "two-sided",
conf.level = 0.95, digits = 0, nmc = 1000, seed = NULL)
{
if (!is.vector(x, mode = "numeric"))
stop("'x' must be a numeric vector")
if (!is.vector(censored, mode = "numeric") && !is.vector(censored,
mode = "logical"))
stop("'censored' must be a logical or numeric vector")
if (length(censored) != length(x))
stop("'censored' must be the same length as 'x'")
data.name <- deparse(substitute(x))
censoring.name <- deparse(substitute(censored))
if ((bad.obs <- sum(!(ok <- is.finite(x) & is.finite(as.numeric(censored))))) >
0) {
x <- x[ok]
censored <- censored[ok]
warning(paste(bad.obs, "observations with NA/NaN/Inf in 'x' and 'censored' removed."))
}
if (is.numeric(censored)) {
if (!all(censored == 0 | censored == 1))
stop(paste("When 'censored' is a numeric vector, all values of",
"'censored' must be 0 (not censored) or 1 (censored)."))
censored <- as.logical(censored)
}
n.cen <- sum(censored)
if (n.cen == 0)
stop("No censored values indicated by 'censored'.")
x.no.cen <- x[!censored]
if (length(unique(x.no.cen)) < 2)
stop("'x' must contain at least 2 non-missing, uncensored, distinct values.")
censoring.side <- match.arg(censoring.side, c("left", "right"))
if (!is.vector(p, mode = "numeric"))
stop("'p' must be a numeric vector.")
if (any(!is.finite(p)))
stop("NA/NaN/Inf values not allowed in 'p'.")
if (any(p < 0) || any(p > 1))
stop("All values of 'p' must be between 0 and 1")
ci.method <- match.arg(ci.method, c("exact.for.complete",
"gpq", "normal.approx"))
ret.list <- enormCensored(x, censored = censored, censoring.side = censoring.side,
method = method, ci = FALSE)
ret.list$data.name <- data.name
ret.list$bad.obs <- bad.obs
params <- ret.list$parameters
q <- qnorm(p, mean = params["mean"], sd = params["sd"])
if (length(p) == 1 && p == 0.5)
names(q) <- "Median"
else {
pct <- round(100 * p, digits)
names(q) <- paste(pct, number.suffix(pct), " %ile", sep = "")
}
ret.list <- c(ret.list, list(quantiles = q))
ret.list$quantile.method <- paste("Quantile(s) Based on\n",
space(33), ret.list$method, " Estimators", sep = "")
if (ci) {
if (length(p) > 1 || p <= 0 || p >= 1)
stop(paste("When 'ci' = TRUE, 'p' must be a scalar",
"larger than 0 and less than 1."))
ci.type <- match.arg(ci.type, c("two-sided", "lower",
"upper"))
if (!is.vector(conf.level, mode = "numeric") || length(conf.level) !=
1 || !is.finite(conf.level) || conf.level <= 0 ||
conf.level >= 1)
stop("'conf.level' must be a numeric scalar between 0 and 1")
n <- length(x)
if (ci.method != "gpq") {
ci.method.arg <- ci.method
if (ci.method == "exact.for.complete")
ci.method.arg <- "exact"
ci.obj <- ci.qnorm(p = p, muhat = params["mean"],
sdhat = params["sd"], n = n, method = ci.method.arg,
ci.type = ci.type, alpha = 1 - conf.level, digits = digits)
if (ci.method == "exact.for.complete" || (ci.method ==
"normal.approx" && p == 0.5))
ci.obj$method <- paste("Exact for\n", space(33),
"Complete Data", sep = "")
}
else {
multiple <- TRUE
T.vec <- unique(x[censored])
if (length(T.vec) == 1) {
if (censoring.side == "left") {
if (T.vec <= min(x.no.cen))
multiple <- FALSE
}
else {
if (T.vec >= max(x.no.cen))
multiple <- FALSE
}
}
probs <- switch(ci.type, lower = 1 - conf.level,
upper = conf.level, `two-sided` = c((1 - conf.level)/2,
(1 + conf.level)/2))
if (multiple) {
diffs <- diff(sort(x))
const <- min(diffs[diffs > 0])/2
if (censoring.side == "right")
const <- -const
new.x <- x
new.x[!censored] <- new.x[!censored] + const
new.censored <- censored[order(new.x)]
cen.index <- (1:n)[new.censored]
if (ci.type == "lower") {
gpq <- gpqTolIntNormMultiplyCensored(n = n,
cen.index = cen.index, p = p, probs = probs,
nmc = nmc, censoring.side = censoring.side,
seed = seed, names = FALSE)
limits <- c(params["mean"] + gpq * params["sd"],
Inf)
}
else if (ci.type == "upper") {
gpq <- gpqTolIntNormMultiplyCensored(n = n,
cen.index = cen.index, p = p, probs = probs,
nmc = nmc, censoring.side = censoring.side,
seed = seed, names = FALSE)
limits <- c(-Inf, params["mean"] + gpq * params["sd"])
}
else {
gpq.lower <- gpqTolIntNormMultiplyCensored(n = n,
cen.index = cen.index, p = p, probs = probs[1],
nmc = nmc, censoring.side = censoring.side,
seed = seed, names = FALSE)
gpq.upper <- gpqTolIntNormMultiplyCensored(n = n,
cen.index = cen.index, p = p, probs = probs[2],
nmc = nmc, censoring.side = censoring.side,
seed = seed, names = FALSE)
limits <- c(params["mean"] + gpq.lower * params["sd"],
params["mean"] + gpq.upper * params["sd"])
}
}
else {
if (ci.type == "lower") {
gpq <- gpqTolIntNormSinglyCensored(n = n, n.cen = n.cen,
p = p, probs = probs, nmc = nmc, censoring.side = censoring.side,
seed = seed, names = FALSE)
limits <- c(params["mean"] + gpq * params["sd"],
Inf)
}
else if (ci.type == "upper") {
gpq <- gpqTolIntNormSinglyCensored(n = n, n.cen = n.cen,
p = p, probs = probs, nmc = nmc, censoring.side = censoring.side,
seed = seed, names = FALSE)
limits <- c(-Inf, params["mean"] + gpq * params["sd"])
}
else {
gpq.lower <- gpqTolIntNormSinglyCensored(n = n,
n.cen = n.cen, p = p, probs = probs[1], nmc = nmc,
censoring.side = censoring.side, seed = seed,
names = FALSE)
gpq.upper <- gpqTolIntNormSinglyCensored(n = n,
n.cen = n.cen, p = p, probs = probs[2], nmc = nmc,
censoring.side = censoring.side, seed = seed,
names = FALSE)
limits <- c(params["mean"] + gpq.lower * params["sd"],
params["mean"] + gpq.upper * params["sd"])
}
}
names(limits) <- c("LCL", "UCL")
ci.obj <- list(name = "Confidence", parameter = names(q),
limits = limits, type = ifelse(ci.type == "two.sided",
"two-sided", ci.type), method = "Generalized Pivotal Quantity",
conf.level = conf.level, nmc = nmc)
}
oldClass(ci.obj) <- "intervalEstimateCensored"
ret.list <- c(ret.list, list(interval = ci.obj))
}
oldClass(ret.list) <- "estimateCensored"
ret.list
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.