Nothing
#########################################################
##
## sample from the posterior distribution
## of ordinal probit changepoint regression model
## using a linear Gaussian approximation
##
## JHP 07/01/2007
## JHP 03/03/2009
## JHP 09/08/2010
#########################################################
#' Markov Chain Monte Carlo for Ordered Probit Changepoint Regression Model
#'
#' This function generates a sample from the posterior distribution of an
#' ordered probit regression model with multiple parameter breaks. The function
#' uses the Markov chain Monte Carlo method of Chib (1998). The user supplies
#' data and priors, and a sample from the posterior distribution is returned as
#' an mcmc object, which can be subsequently analyzed with functions provided
#' in the coda package.
#'
#' \code{MCMCoprobitChange} simulates from the posterior distribution of an
#' ordinal probit regression model with multiple parameter breaks. The
#' simulation of latent states is based on the linear approximation method
#' discussed in Park (2011).
#'
#' The model takes the following form:
#'
#' \deqn{\Pr(y_t = 1) = \Phi(\gamma_{c, m} - x_i'\beta_m) - \Phi(\gamma_{c-1, m} - x_i'\beta_m)\;\; m = 1, \ldots, M}
#'
#' Where \eqn{M} is the number of states, and \eqn{\gamma_{c, m}} and
#' \eqn{\beta_m} are paramters when a state is \eqn{m} at \eqn{t}.
#'
#' We assume Gaussian distribution for prior of \eqn{\beta}:
#'
#' \deqn{\beta_m \sim \mathcal{N}(b_0,B_0^{-1}),\;\; m = 1, \ldots, M}
#'
#' And:
#'
#' \deqn{p_{mm} \sim \mathcal{B}eta(a, b),\;\; m = 1, \ldots, M}
#'
#' Where \eqn{M} is the number of states.
#'
#' Note that when the fitted changepoint model has very few observations in any
#' of states, the marginal likelihood outcome can be ``nan," which indicates
#' that too many breaks are assumed given the model and data.
#'
#' @param formula Model formula.
#'
#' @param data Data frame.
#'
#' @param m The number of changepoints.
#'
#' @param burnin The number of burn-in iterations for the sampler.
#'
#' @param mcmc The number of MCMC iterations after burnin.
#'
#' @param thin The thinning interval used in the simulation. The number of
#' MCMC iterations must be divisible by this value.
#'
#' @param tune The tuning parameter for the Metropolis-Hastings step. Default
#' of NA corresponds to a choice of 0.05 divided by the number of categories in
#' the response variable.
#'
#' @param verbose A switch which determines whether or not the progress of the
#' sampler is printed to the screen. If \code{verbose} is greater than 0 the
#' iteration number, the \eqn{\beta} vector, and the error variance are
#' printed to the screen every \code{verbose}th iteration.
#'
#' @param seed The seed for the random number generator. If NA, the Mersenne
#' Twister generator is used with default seed 12345; if an integer is passed
#' it is used to seed the Mersenne twister. The user can also pass a list of
#' length two to use the L'Ecuyer random number generator, which is suitable
#' for parallel computation. The first element of the list is the L'Ecuyer
#' seed, which is a vector of length six or NA (if NA a default seed of
#' \code{rep(12345,6)} is used). The second element of list is a positive
#' substream number. See the MCMCpack specification for more details.
#'
#' @param beta.start The starting values for the \eqn{\beta} vector.
#' This can either be a scalar or a column vector with dimension equal to the
#' number of betas. The default value of of NA will use the MLE estimate of
#' \eqn{\beta} as the starting value. If this is a scalar, that value
#' will serve as the starting value mean for all of the betas.
#'
#' @param gamma.start The starting values for the \eqn{\gamma} vector.
#' This can either be a scalar or a column vector with dimension equal to the
#' number of gammas. The default value of of NA will use the MLE estimate of
#' \eqn{\gamma} as the starting value. If this is a scalar, that value
#' will serve as the starting value mean for all of the gammas.
#'
#' @param P.start The starting values for the transition matrix. A user should
#' provide a square matrix with dimension equal to the number of states. By
#' default, draws from the \code{Beta(0.9, 0.1)} are used to construct a proper
#' transition matrix for each raw except the last raw.
#'
#' @param b0 The prior mean of \eqn{\beta}. This can either be a scalar
#' or a column vector with dimension equal to the number of betas. If this
#' takes a scalar value, then that value will serve as the prior mean for all
#' of the betas.
#'
#' @param B0 The prior precision of \eqn{\beta}. This can either be a
#' scalar or a square matrix with dimensions equal to the number of betas. If
#' this takes a scalar value, then that value times an identity matrix serves
#' as the prior precision of beta. Default value of 0 is equivalent to an
#' improper uniform prior for beta.
#'
#' @param a \eqn{a} is the shape1 beta prior for transition probabilities.
#' By default, the expected duration is computed and corresponding a and b
#' values are assigned. The expected duration is the sample period divided by
#' the number of states.
#'
#' @param b \eqn{b} is the shape2 beta prior for transition probabilities.
#' By default, the expected duration is computed and corresponding a and b
#' values are assigned. The expected duration is the sample period divided by
#' the number of states.
#'
#' @param marginal.likelihood How should the marginal likelihood be calculated?
#' Options are: \code{none} in which case the marginal likelihood will not be
#' calculated, and \code{Chib95} in which case the method of Chib (1995) is
#' used.
#'
#' @param gamma.fixed 1 if users want to constrain \eqn{\gamma} values
#' to be constant. By default, \eqn{\gamma} values are allowed to vary
#' across regimes.
#'
#' @param ... further arguments to be passed
#'
#' @return An mcmc object that contains the posterior sample. This object can
#' be summarized by functions provided by the coda package. The object
#' contains an attribute \code{prob.state} storage matrix that contains the
#' probability of \eqn{state_i} for each period, the log-likelihood of
#' the model (\code{loglike}), and the log-marginal likelihood of the model
#' (\code{logmarglike}).
#'
#' @export
#'
#' @seealso \code{\link{plotState}}, \code{\link{plotChangepoint}}
#'
#' @references Jong Hee Park. 2011. ``Changepoint Analysis of Binary and
#' Ordinal Probit Models: An Application to Bank Rate Policy Under the Interwar
#' Gold Standard." \emph{Political Analysis}. 19: 188-204. <doi:10.1093/pan/mpr007>
#'
#' Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. ``MCMCpack:
#' Markov Chain Monte Carlo in R.'', \emph{Journal of Statistical Software}.
#' 42(9): 1-21. \doi{10.18637/jss.v042.i09}.
#'
#' Siddhartha Chib. 1998. ``Estimation and comparison of multiple change-point
#' models.'' \emph{Journal of Econometrics}. 86: 221-241.
#'
#' @keywords models
#'
#' @examples
#'
#' set.seed(1909)
#' N <- 200
#' x1 <- rnorm(N, 1, .5);
#'
#' ## set a true break at 100
#' z1 <- 1 + x1[1:100] + rnorm(100);
#' z2 <- 1 -0.2*x1[101:200] + rnorm(100);
#' z <- c(z1, z2);
#' y <- z
#'
#' ## generate y
#' y[z < 1] <- 1;
#' y[z >= 1 & z < 2] <- 2;
#' y[z >= 2] <- 3;
#'
#' ## inputs
#' formula <- y ~ x1
#'
#' ## fit multiple models with a varying number of breaks
#' out1 <- MCMCoprobitChange(formula, m=1,
#' mcmc=100, burnin=100, thin=1, tune=c(.5, .5), verbose=100,
#' b0=0, B0=0.1, marginal.likelihood = "Chib95")
#' out2 <- MCMCoprobitChange(formula, m=2,
#' mcmc=100, burnin=100, thin=1, tune=c(.5, .5, .5), verbose=100,
#' b0=0, B0=0.1, marginal.likelihood = "Chib95")
#'
#' ## Do model comparison
#' ## NOTE: the chain should be run longer than this example!
#' BayesFactor(out1, out2)
#'
#' ## draw plots using the "right" model
#' plotState(out1)
#' plotChangepoint(out1)
#'
"MCMCoprobitChange"<-
function(formula, data=parent.frame(), m = 1,
burnin = 1000, mcmc = 1000, thin = 1, tune = NA, verbose = 0,
seed = NA, beta.start = NA, gamma.start = NA, P.start = NA,
b0 = NULL, B0 = NULL, a = NULL, b = NULL,
marginal.likelihood = c("none", "Chib95"),
gamma.fixed=0, ...){
## checks
check.offset(list(...))
check.mcmc.parameters(burnin, mcmc, thin)
cl <- match.call()
nstore <- mcmc/thin
## seeds
seeds <- form.seeds(seed)
lecuyer <- seeds[[1]]
seed.array <- seeds[[2]]
lecuyer.stream <- seeds[[3]]
totiter <- mcmc+burnin
holder <- parse.formula(formula, data=data)
y <- holder[[1]]
X <- holder[[2]]
xnames <- holder[[3]]
K <- ncol(X)
Y <- factor(y, ordered = TRUE)
ncat <- nlevels(Y)
cat <- levels(Y)
ns <- m + 1
N <- nrow(X)
gk <- ncat + 1
if(sum(is.na(tune))==1) {
stop("Please specify a tune parameter and call MCMCoprobitChange() again.\n")
}
else if (length(tune)==1){
tune <- rep(tune, ns)
}
else if(length(tune)>1&length(tune)<ns){
tune <- rep(tune[1], ns)
cat("The first element of tune is repeated to make it conformable to the number of states.\n")
}
else{
}
xint <- match("(Intercept)", colnames(X), nomatch = 0)
if (xint > 0) {
new.X <- X[, -xint, drop = FALSE]
}
else
warning("An intercept is needed and assumed in MCMCoprobitChange()\n.")
if (ncol(new.X) == 0) {
polr.out <- polr(ordered(Y) ~ 1)
}
else {
polr.out <- polr(ordered(Y) ~ new.X)
}
## prior for transition matrix
A0 <- trans.mat.prior(m=m, n=N, a=a, b=b)
## prior for beta error checking
if(is.null(dim(b0))) {
b0 <- b0 * matrix(1,K,1)
}
if((dim(b0)[1] != K) || (dim(b0)[2] != 1)) {
cat("N(b0,B0) prior b0 not conformable.\n")
stop("Please respecify and call MCMCoprobitChange() again.\n")
}
if(is.null(dim(B0))) {
B0 <- B0 * diag(K)
}
if((dim(B0)[1] != K) || (dim(B0)[2] != K)) {
cat("N(b0,B0) prior B0 not conformable.\n")
stop("Please respecify and call MCMCoprobitChange() again.\n")
}
marginal.likelihood <- match.arg(marginal.likelihood)
B0.eigenvalues <- eigen(B0)$values
if (isTRUE(all.equal(min(B0.eigenvalues), 0))){
if (marginal.likelihood != "none"){
warning("Cannot calculate marginal likelihood with improper prior\n")
marginal.likelihood <- "none"
}
}
chib <- 0
if (marginal.likelihood == "Chib95"){
chib <- 1
}
## to save time
B0inv <- solve(B0)
gamma.start <- matrix(NA, ncat + 1, 1)
gamma.start[1] <- -300
gamma.start[2] <- 0
gamma.start[3:ncat] <- (polr.out$zeta[2:(ncat - 1)] - polr.out$zeta[1]) * 0.588
gamma.start[ncat + 1] <- 300
## initial values
mle <- polr(Y ~ X[,-1])
beta <- matrix(rep(c(mle$zeta[1], coef(mle)), ns), ns, , byrow=TRUE)
ols <- lm(as.double(Y) ~ X-1)
betalinearstart <- matrix(rep(coef(ols), ns), ns, , byrow=TRUE)
P <- trans.mat.prior(m=m, n=N, a=0.9, b=0.1)
Sigmastart <- summary(ols)$sigma
if (gamma.fixed==1){
gamma <- gamma.start
gamma.storage <-rep(0.0, nstore*gk)
}
else {
gamma <- matrix(rep(gamma.start, ns), ns, , byrow=T)
gamma.storage <- rep(0.0, nstore*ns*gk)
}
## call C++ code to draw sample
posterior <- .C("cMCMCoprobitChange",
betaout = as.double(rep(0.0, nstore*ns*K)),
betalinearout = as.double(rep(0.0, nstore*ns*K)),
gammaout = as.double(gamma.storage),
Pout = as.double(rep(0.0, nstore*ns*ns)),
psout = as.double(rep(0.0, N*ns)),
sout = as.double(rep(0.0, nstore*N)),
Ydata = as.double(Y),
Xdata = as.double(X),
Xrow = as.integer(nrow(X)),
Xcol = as.integer(ncol(X)),
m = as.integer(m),
ncat = as.integer(ncat),
burnin = as.integer(burnin),
mcmc = as.integer(mcmc),
thin = as.integer(thin),
verbose = as.integer(verbose),
tunedata = as.double(tune),
lecuyer=as.integer(lecuyer),
seedarray=as.integer(seed.array),
lecuyerstream=as.integer(lecuyer.stream),
betastart = as.double(beta),
betalinearstart = as.double(betalinearstart),
gammastart = as.double(gamma),
Pstart = as.double(P),
sigmastart = as.double(Sigmastart),
a = as.double(a),
b = as.double(b),
b0data = as.double(b0),
B0data = as.double(B0),
A0data = as.double(A0),
logmarglikeholder = as.double(0.0),
loglikeholder = as.double(0.0),
chib = as.integer(chib),
gammafixed= as.integer(gamma.fixed))
## get marginal likelihood if Chib95
if (chib==1){
logmarglike <- posterior$logmarglikeholder
loglike <- posterior$loglikeholder
}
else{
logmarglike <- loglike <- 0
}
## pull together matrix and build MCMC object to return
beta.holder <- mcmc(matrix(posterior$betaout, nstore, ns*K))
if (gamma.fixed==1){
gamma.holder <- mcmc(matrix(posterior$gammaout, nstore, gk))
}
else {
gamma.holder <- mcmc(matrix(posterior$gammaout, nstore, ns*gk))
}
P.holder <- matrix(posterior$Pout, nstore, )
s.holder <- matrix(posterior$sout, nstore, )
ps.holder <- matrix(posterior$psout, N, )
varnames(beta.holder) <- sapply(c(1:ns),
function(i){
paste(c(xnames), "_regime", i, sep = "")
})
## betalinear
betalinear.holder <- mcmc(matrix(posterior$betalinearout, nstore, ns*K))
varnames(betalinear.holder) <- sapply(c(1:ns),
function(i){
paste(c(xnames), "_regime", i, sep = "")
})
gamma.holder <- gamma.holder[, as.vector(sapply(1:ns, function(i){gk*(i-1) + (3:(gk-1))}))]
gamma.names <- paste("gamma", 3:(gk-1), sep="")
varnames(gamma.holder) <- sapply(c(1:ns),
function(i){
paste(gamma.names, "_regime", i, sep = "")
})
output <- mcmc(cbind(beta.holder, gamma.holder))
attr(output, "title") <- "MCMCoprobitChange Posterior Sample"
## attr(output, "betalinear") <- mcmc(betalinear.holder)
attr(output, "formula") <- formula
attr(output, "y") <- Y
attr(output, "X") <- X
attr(output, "m") <- m
attr(output, "call") <- cl
attr(output, "logmarglike") <- logmarglike
attr(output, "loglike") <- loglike
attr(output, "prob.state") <- ps.holder/nstore
attr(output, "s.store") <- s.holder
return(output)
}## end of MCMC function
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.