MVar.pt-package: Analise multivariada (brazilian portuguese).

Description Details Author(s) References

Description

Pacote para analise multivariada, que possui funcoes que executam analise de correspondencia simples (CA) e multipla (MCA), analise de componentes principais (PCA), analise de correlacao canonica (CCA), analise fatorial (FA), escalonamento multidimensional (MDS), analise de cluster hierarquico e nao hierarquico, regressao linear, analise de multiplos fatores (MFA) para dados quantitativos, qualitativos, de frequencia (MFACT) e dados mistos, projection pursuit (PP), grant tour e outras funcoes uteis para a analise multivariada.

Details

Package: MVar.pt
Type: Package
Version: 1.9.9
Date: 2017-11-23
License: GPL(>= 2)
LazyLoad: yes

Author(s)

Paulo Cesar Ossani e Marcelo Angelo Cirillo.

Maintainer: Paulo Cesar Ossani <[email protected]>

References

ABDESSEMED, L. and ESCOFIER, B.; Analyse factorielle multiple de tableaux de frequencies: comparaison avec l'analyse canonique des correspondences. Journal de la Societe de Statistique de Paris, Paris, v. 137, n. 2, p. 3-18, 1996.

ABDI, H. Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD). In: SALKIND, N. J. (Ed.). Encyclopedia of measurement and statistics. Thousand Oaks: Sage, 2007. p. 907-912.

ABDI, H.; VALENTIN, D. Multiple factor analysis (MFA). In: SALKIND, N. J. (Ed.). Encyclopedia of measurement and statistics. Thousand Oaks: Sage, 2007. p. 657-663.

ABDI, H.; WILLIAMS, L. Principal component analysis. WIREs Computational Statatistics, New York, v. 2, n. 4, p. 433-459, July/Aug. 2010.

ABDI, H.; WILLIAMS, L.; VALENTIN, D. Multiple factor analysis: principal component analysis for multitable and multiblock data sets. WIREs Computational Statatistics, New York, v. 5, n. 2, p. 149-179, Feb. 2013.

ASIMOV, D. The Grand Tour: A Tool for Viewing Multidimensional Data. SIAM Journal of Scientific and Statistical Computing, 6(1), 128-143, 1985.

ASIMOV, D.; BUJA, A. The grand tour via geodesic interpolation of 2-frames. in Visual Data Exploration and Analysis. Symposium on Electronic Imaging Science and Technology, IS&T/SPIE. 1994.

BECUE-BERTAUT, M.; PAGES, J. A principal axes method for comparing contingency tables: MFACT. Computational Statistics & Data Analysis, New York, v. 45, n. 3, p. 481-503, Feb. 2004

BECUE-BERTAUT, M.; PAGES, J. Multiple factor analysis and clustering of a mixture of quantitative, categorical and frequency data. Computational Statistics & Data Analysis, New York, v. 52, n. 6, p. 3255-3268, Feb. 2008.

BENZECRI, J. Analyse de l'inertie intraclasse par l'analyse d'un tableau de contingence: intra-classinertia analysis through the analysis of a contingency table. Les Cahiers de l'Analyse des Donnees, Paris, v. 8, n. 3, p. 351-358, 1983.

BUJA, A.; ASIMOV, D. Grand tour methods: An outline. Computer Science and Statistics, 17:63-67. 1986.

BUJA, A.; COOK, D.; ASIMOV, D.; HURLEY, C. Computational Methods for High-Dimensional Rotations in Data Visualization, in C. R. Rao, E. J. Wegman & J. L. Solka, eds, "Handbook of Statistics: Data Mining and Visualization", Elsevier/North Holland, http://www.elsevier.com, pp. 391-413. 2005.

CHARNET, R., at al.. Analise de modelos de regressao lienar, 2a ed. Campinas: Editora da Unicamp, 2008. 357 p.

COOK, D., LEE, E. K., BUJA, A., WICKHAM, H.. Grand tours, projection pursuit guided tours and manual controls. In Chen, Chunhouh, Hardle, Wolfgang, Unwin, e Antony (Eds.), Handbook of Data Visualization, Springer Handbooks of Computational Statistics, chapter III.2, p. 295-314. Springer, 2008.

COOK, D., BUJA, A., CABRERA, J.. Projection pursuit indexes based on orthonormal function expansions. Journal of Computational and Graphical Statistics, 2(3):225-250, 1993.

COOK, D., BUJA, A., CABRERA, J., HURLEY, C.. Grand tour and projection pursuit, Journal of Computational and Graphical Statistics, 4(3), 155-172, 1995.

COOK, D., SWAYNE, D. F.. Interactive and Dynamic Graphics for Data Analysis: With R and GGobi. Springer. 2007.

ESCOFIER, B. Analyse factorielle en reference a un modele: application a l'analyse d'un tableau d'echanges. Revue de Statistique Appliquee, Paris, v. 32, n. 4, p. 25-36, 1984.

ESCOFIER, B.; DROUET, D. Analyse des differences entre plusieurs tableaux de frequence. Les Cahiers de l'Analyse des Donnees, Paris, v. 8, n. 4, p. 491-499, 1983.

ESCOFIER, B.; PAGES, J. Analyse factorielles simples et multiples. Paris: Dunod, 1990. 267 p.

ESCOFIER, B.; PAGES, J. Analyses factorielles simples et multiples: objectifs, methodes et interpretation. 4th ed. Paris: Dunod, 2008. 318 p.

ESCOFIER, B.; PAGES, J. Comparaison de groupes de variables definies sur le meme ensemble d'individus: un exemple d'applications. Le Chesnay: Institut National de Recherche en Informatique et en Automatique, 1982. 121 p.

ESCOFIER, B.; PAGES, J. Multiple factor analysis (AFUMULT package). Computational Statistics & Data Analysis, New York, v. 18, n. 1, p. 121-140, Aug. 1994

ESPEZUA, S., VILLANUEVA, E., MACIEL, C.D., CARVALHO, A.. A projection pursuit framework for supervised dimension reduction of high dimensional small sample datasets. Neurocomputing, 149, 767-776, 2015.

FERREIRA, D. F. Estatistica multivariada. 2. ed. rev. e ampl. Lavras: UFLA, 2011. 675 p.

FRIEDMAN, J. H., TUKEY, J. W. A projection pursuit algorithm for exploratory data analysis. IEEE Transaction on Computers, 23(9):881-890, 1974.

GREENACRE, M.; BLASIUS, J. Multiple correspondence analysis and related methods. New York: Taylor and Francis, 2006. 607 p.

HASTIE, T., BUJA, A., TIBSHIRANI, R.: Penalized discriminant analysis. The Annals of Statistics. 23(1), 73-102 . 1995.

HOTELLING, H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, Arlington, v. 24, p. 417-441, Sept. 1933.

HUBER, P. J.. Projection pursuit. Annals of Statistics, 13(2):435-475, 1985.

HURLEY, C.; BUJA, A. Analyzing high-dimensional data with motion graphics, SIAM Journal of Scientific and Statistical Computing, 11 (6), 1193-1211. 1990.

JOHNSON, R. A.; WICHERN, D. W. Applied multivariate statistical analysis. 6th ed. New Jersey: Prentice Hall, 2007. 794 p.

JONES, M. C., SIBSON, R.. What is projection pursuit, (with discussion), Journal of the Royal Statistical Society, Series A 150, 1-36, 1987.

LEE, E., COOK, D., KLINKE, S., LUMLEY, T.. Projection pursuit for exploratory supervised classification. Journal of Computational and Graphical Statistics, 14(4):831-846, 2005.

LEE, E. K., COOK, D.. A projection pursuit index for large p small n data. Statistics and Computing, 20(3):381-392, 2010.

MARTINEZ, W. L., MARTINEZ, A. R.; Computational Statistics Handbook with MATLAB, 2th. ed. New York: Chapman & Hall/CRC, 2007. 794 p.

MARTINEZ, W. L., MARTINEZ, A. R., SOLKA, J.; Exploratory Data Analysis with MATLAB, 2th. ed. New York: Chapman & Hall/CRC, 2010. 499 p.

MINGOTI, S. A. Analise de dados atraves de metodos de estatistica multivariada: uma abordagem aplicada. Belo Horizonte: UFMG, 2005. 297 p.

OSSANI, P. C.; CIRILLO, M. A.; BOREM, F. M.; RIBEIRO, D. E.; CORTEZ, R. M.. Quality of specialty coffees: a sensory evaluation by consumers using the MFACT technique. Revista Ciencia Agronomica (UFC. Online), v. 48, p. 92-100, 2017.

OSSANI, P. C. Qualidade de cafes especiais e nao especiais por meio da analise de multiplos fatores para tabelas de contingencias. 2015. 107 p. Dissertacao (Mestrado em Estatistica e Experimentacao Agropecuaria) - Universidade Federal de Lavras, Lavras, 2015.

PAGES, J. Analyse factorielle multiple appliquee aux variables qualitatives et aux donnees mixtes. Revue de Statistique Appliquee, Paris, v. 50, n. 4, p. 5-37, 2002.

PAGES, J. Multiple factor analysis: main features and application to sensory data. Revista Colombiana de Estadistica, Bogota, v. 27, n. 1, p. 1-26, 2004.

PENA, D., PRIETO, F.. Cluster identification using projections. Journal of the American Statistical Association, 96(456):1433-1445, 2001.

POSSE, C.. Projection pursuit exploratory data analysis, Computational Statistics and Data Analysis, 29:669-687, 1995a.

POSSE, C.. Tools for two-dimensional exploratory projection pursuit, Journal of Computational and Graphical Statistics, 4:83-100, 1995b

RENCHER, A.C.; Methods of Multivariate Analysis. 2th. ed. New York: J.Wiley, 2002. 708 p.

YOUNG, F. W.; RHEINGANS P. Visualizing structure in high-dimensional multivariate data, IBM Journal of Research and Development, 35:97-107, 1991.

YOUNG, F. W.; FALDOWSKI R. A.; McFARLANE M. M. Multivariate statistical visualization, in Handbook of Statistics, Vol 9, C. R. Rao (ed.), The Netherlands: Elsevier Science Publishers, 959-998, 1993.


MVar.pt documentation built on Nov. 23, 2017, 5:04 p.m.