Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
tidy = FALSE,
tidy.opts = list(width.cutoff = 95),
fig.width = 6,
fig.height = 3,
message = FALSE,
warning = FALSE,
time_it = TRUE,
fig.align = "center"
)
library(OlinkAnalyze)
library(dplyr)
## ----echo=FALSE---------------------------------------------------------------
set.seed(1234)
table1<-npx_data1 |>
head() |>
dplyr::select(-c(Index, MissingFreq, Panel_Version, QC_Warning, Subject, Treatment, Site, Time, Project, Panel, PlateID)) |>
dplyr::mutate(Count = round(NPX * (100+sample(seq(-5,15), size = 1)))) |>
dplyr::mutate(SampleType = "SAMPLE") |>
dplyr::mutate(Normalization = "Plate control") |>
dplyr::mutate(NPX = round(NPX,digits = 2)) |>
dplyr::mutate(LOD = round(LOD, digits = 2)) |>
dplyr::mutate(PCNormalizedNPX = NPX) |>
dplyr::mutate(PCNormalizedLOD = LOD) |>
dplyr::select(SampleID, SampleType, OlinkID, UniProt, Assay, Count, NPX, PCNormalizedNPX,Normalization, LOD, PCNormalizedLOD)
table1 |>
knitr::kable(caption = "Example results from Plate Control Normalized Project") |>
kableExtra::kable_styling(font_size = 10)
table1 |>
dplyr::mutate(Normalization = "Intensity") |>
dplyr::mutate(NPX = round(NPX + 4.16,digits = 2)) |>
dplyr::mutate(LOD = round(LOD + 4.16, digits = 2)) |>
dplyr::select(SampleID, SampleType, OlinkID, UniProt, Assay, Count, NPX, PCNormalizedNPX,Normalization, LOD, PCNormalizedLOD) |>
knitr::kable(caption = "Example results from Intensity Normalized Project") |>
kableExtra::kable_styling(font_size = 10)
## ----dataset_generation, eval = FALSE, message=FALSE, warning=FALSE-----------
# explore_npx <- read_NPX("~/Explore_NPX_file.parquet")
## ----NCLOD_example, eval = FALSE, message=FALSE, warning=FALSE----------------
# # Integrating negative control LOD for intensity normalized data
# explore_npx <- read_NPX("Path_to/Explore_NPX_file.parquet")
# olink_lod(explore_npx, lod_method = "NCLOD")
## ----FixedLOD, eval = FALSE, message=FALSE, warning=FALSE---------------------
# # Reading in Fixed LOD file path into R environment
# fixedLOD_filepath <- "Path_to/ExploreHT_fixedLOD.csv"
#
# # Integrating Fixed LOD for intensity normalized data
# explore_npx <- read_NPX("~/Explore_NPX_file.parquet")
# olink_lod(explore_npx, lod_file_path = fixedLOD_filepath, lod_method = "FixedLOD")
## ----echo=FALSE---------------------------------------------------------------
table1 |>
dplyr::mutate(Normalization = "Intensity") |>
dplyr::mutate(PCNormalizedNPX = round(NPX,digits = 2)) |>
dplyr::mutate(PCNormalizedLOD = round(LOD, digits = 2)) |>
dplyr::mutate(NPX = round(NPX + 4.16, digits = 2))|>
dplyr::mutate(LOD = round(LOD + 4.16, digits = 2)) |>
dplyr::rename(FixedLOD = LOD,
FixedPCNormalizedLOD = PCNormalizedLOD) |>
dplyr::mutate(NCLOD = FixedLOD - 2.34,
NCPCNormalizedLOD = FixedPCNormalizedLOD - 2.34) |>
dplyr::select(SampleID, SampleType, OlinkID, UniProt, Assay, Count, NPX, Normalization, PCNormalizedNPX, FixedLOD, FixedPCNormalizedLOD, NCLOD, NCPCNormalizedLOD) |>
knitr::kable(caption = "Example results using both LOD calculation methods") |>
kableExtra::kable_styling(font_size = 10)
## ----explore_npx_export, eval = FALSE, message=FALSE, warning=FALSE-----------
# # Exporting Olink Explore data with LOD information as a parquet file
# explore_npx <- read_NPX("Path_to/Explore_NPX_file.parquet")
#
# explore_npx_NC_LOD <- explore_npx %>%
# olink_lod(lod_method = "NCLOD")
#
# # Add metadata for export
# df <- explore_npx_NC_LOD |>
# arrow::as_arrow_table()
#
# df$metadata$FileVersion <- "NA"
# df$metadata$ExploreVersion <- "NA"
# df$metadata$ProjectName <- "NA"
# df$metadata$SampleMatrix <- "NA"
# df$metadata$DataFileType <- "Olink Analyze Export File"
# df$metadata$ProductType <- "ExploreHT" # "ExploreHT" or "Explore3072"
# df$metadata$Product <- "ExploreHT" # "ExploreHT" or "Explore3072"
#
# arrow::write_parquet(x = df, sink = "path_to_output.parquet")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.