CV2se+se2CV+CV2mse+mse2CV | R Documentation |
Calculates the standard error or the mean squared error from a given CV and vice versa for log-normal data.
CV2se(CV)
se2CV(se)
CV2mse(CV)
mse2CV(mse)
CV |
coefficient of variatio as ratio (not percent) |
se |
standard error |
mse |
mean squared error (aka residual variance) |
Returns
se = sqrt(log(CV^2+1))
CV = sqrt(exp(se^2)-1)
mse = log(CV^2+1)
CV = sqrt(exp(mse)-1)
These functions were originally intended for internal use only but may be useful for others.
D. Labes
# these functions are one liners:
CV2se <- function(CV) return(sqrt(log(1.0 + CV^2)))
se2CV <- function(se) return(sqrt(exp(se^2)-1))
CV2se(0.3)
# should give:
# [1] 0.2935604
se2CV(0.2935604)
# [1] 0.3
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.