Nothing
#' REMixed algorithm
#'
#' @description
#' Regularization and Estimation in Mixed effects model.
#'
#' @details
#' See \code{\link{REMixed-package}} for details on the model.
#' For population parameter estimation settings, see (<https://monolixsuite.slp-software.com/r-functions/2024R1/setpopulationparameterestimationsettings>).
#'
#'
#' @param project directory of the Monolix project (in .mlxtran). If NULL, the current loaded project is used (default is NULL).
#' @param final.project directory of the final Monolix project (default add "_upd" to the Monolix project).
#' @param dynFUN function computing the dynamics of interest for a set of parameters. This function need to contain every sub-function that it may needs (as it is called in a \code{foreach} loop). The output of this function need to return a data.frame with \code{time} as first columns and named dynamics in other columns. It must take in input : \describe{\item{\code{y}}{a named vector with the initial condition. The names are the dynamics names.}
#' \item{\code{parms}}{a named vector of parameter.}
#' \item{\code{time}}{vector a timepoint.}}
#'
#' See \code{\link{dynFUN_demo}}, \code{\link{model.clairon}}, \code{\link{model.pasin}} or \code{\link{model.pk}} for examples.
#' @param y initial condition of the mechanism model, conform to what is asked in dynFUN.
#' @param ObsModel.transfo list containing two lists of transformations and two vectors linking each transformations to their observation model name in the Monolix project. The list should include identity transformations and be named \code{S} and \code{R}. The two vectors should be named \code{linkS} and \code{linkR}.
#'
#' Both \code{S} (for the direct observation models) and \code{linkS}, as well as \code{R} (for latent process models) and \code{linkR}, must have the same length.
#'
#' \describe{
#' \item{\code{S}}{a list of transformations for the direct observation models. Each transformation corresponds to a variable \eqn{Y_p=h_p(S_p)}, where the name indicates which dynamic is observed (from \code{dynFUN});}\item{\code{linkS}}{a vector specifying the observation model names (that is used in the monolix project, \code{alpha1}, etc.) for each transformation, in the same order as in \code{S};}
#'
#' \item{\code{R}}{similarly, a list of transformations for the latent process models. Although currently there is only one latent dynamic, each \eqn{s_k, k\leq K} transformation corresponds to the same dynamic but may vary for each \eqn{Y_k} observed. The names should match the output from \code{dynFUN};} \item{\code{linkR}}{a vector specifying the observation model names for each transformation, in the same order as in \code{R}.}
#' }
#' @param alpha named list of named vector "\code{alpha0}", "\code{alpha1}" (all \code{alpha1} are mandatory). The name of \code{alpha$alpha0} and \code{alpha$alpha1} are the observation model names from the monolix project to which they are linked (if the observations models are defined whithout intercept, alpha$alpha0 need to be set to the vector NULL).
#' @param lambda penalization parameter \eqn{\lambda}.
#' @param eps1 integer (>0) used to define the convergence criteria for the regression parameters.
#' @param eps2 integer (>0) used to define the convergence criteria for the likelihood.
#' @param selfInit logical, if the SAEM is already done in the monolix project should be use as the initial point of the algorithm (if FALSE, SAEM is automatically compute according to \code{pop.set1} settings ; if TRUE, a SAEM through monolix need to have been launched).
#' @param pop.set1 population parameters setting for initialisation (see details).
#' @param pop.set2 population parameters setting for iterations.
#' @param pop.set3 population parameters setting for final estimation.
#' @param prune percentage for prunning (\eqn{\in[0;1]}) in the Adaptative Gauss-Hermite algorithm used to compute the log-likelihood and its derivates (see \code{\link{gh.LL}}).
#' @param n number of points for gaussian quadrature (see \code{\link{gh.LL}}).
#' @param parallel logical, if the computation should be done in parallel when possible (default TRUE).
#' @param ncores number of cores for parallelization (default NULL and \code{\link{detectCores}} is used).
#' @param print logical, if the results and algotihm steps should be displayed in the console (default to TRUE).
#' @param verbose logical, if progress bar should be printed when possible.
#' @param digits number of digits to print (default to 3).
#' @param trueValue -for simulation purposes- named vector of true value for parameters.
#' @param finalSAEM logical, if a final SAEM should be launch with respect to the final selected set.
#' @param test if Wald test should be computed at the end of the iteration.
#' @param p.max maximum value to each for wald test p.value (default 0.05).
#' @param max.iter maximum number of iterations (default 20).
#'
#' @seealso \code{\link{cv.remix}}.
#' @return a list of outputs of final project and through the iteration : \describe{\item{\code{info}}{informations about the parameters (project path, regulatization and population parameter names, alpha names, value of lambda used, if final SAEM and test has been computed, parameters p.max and \eqn{N}) ;}\item{\code{finalRes}}{containing loglikelihood \code{LL} and penalized loglikelihood \code{LL.pen} values, final population parameters \code{param} and final regularization parameters \code{alpha} values, number of iterations \code{iter} and \code{time} needed , if computed, the estimated standard errors \code{standardError} and if test computed, the final results before test \code{saemBeforeTest} ;}\item{\code{iterOutputs}}{the list of all remix outputs, i.e. parameters, lieklihood, SAEM estimates and convergence criterion value over the iteration.}}
#' @export
#'
#' @examples
#' \dontrun{
#' project <- getMLXdir()
#'
#' ObsModel.transfo = list(S=list(AB=log10),
#' linkS="yAB",
#' R=rep(list(S=function(x){x}),5),
#' linkR = paste0("yG",1:5))
#'
#' alpha=list(alpha0=NULL,
#' alpha1=setNames(paste0("alpha_1",1:5),paste0("yG",1:5)))
#'
#' y = c(S=5,AB=1000)
#' lambda = 382.22
#'
#' res = remix(project = project,
#' dynFUN = dynFUN_demo,
#' y = y,
#' ObsModel.transfo = ObsModel.transfo,
#' alpha = alpha,
#' selfInit = TRUE,
#' eps1=10**(-2),
#' eps2=1,
#' lambda=lambda)
#'
#' summary(res)
#'
#' trueValue = read.csv(paste0(dirname(project),"/demoSMLX/Simulation/populationParameters.txt"))
#'
#' plotSAEM(res,paramToPlot = c("delta_S_pop","phi_S_pop","delta_AB_pop"),trueValue=trueValue)
#' }
remix <- function(project = NULL,
final.project = NULL,
dynFUN,
y,
ObsModel.transfo,
alpha,
lambda,
eps1 = 10**(-2),
eps2 = 10**(-1),
selfInit = FALSE,
pop.set1 = NULL,
pop.set2 = NULL,
pop.set3 = NULL,
prune = NULL,
n = NULL,
parallel=TRUE,
ncores = NULL,
print = TRUE,
verbose=FALSE,
digits=3,
trueValue = NULL,
finalSAEM =FALSE,
test=TRUE,
max.iter =+Inf,
p.max=0.05){
method <- NULL
RelativeBias <- parameter <- NULL
stat.test <- p.value <- NULL
ptm.first <- ptm <- proc.time()
dashed.line <- "--------------------------------------------------\n"
plain.line <- "__________________________________________________\n"
dashed.short <- "-----------------------\n"
plain.short <- "_______________________\n"
op.original <- options()
on.exit(options(op.original))
op.new <- options()
op.new$lixoft_notificationOptions$warnings <- 1
options(op.new)
########### Technical PARAMETER ################
if(parallel){
if(is.null(ncores)){
ncores = parallel::detectCores()
}
cluster <- snow::makeCluster(ncores)
doSNOW::registerDoSNOW(cluster)
}
################ START INITIALIZATION OF PROJECT REMIXed ################
check.proj(project,alpha)
g = mlx.getObservationInformation()
gy <- data.frame()
for(var in g$name){
gy <- rbind(gy,dplyr::rename(g[[var]],"obsid"=var))
}
N <- length(unique(gy[["id"]]))
ntot <- nrow(gy)
if(selfInit){
pop.set1 <- mlx.getPopulationParameterEstimationSettings()
}
regParam.toprint = paste0(alpha$alpha1,"_pop")
if(!is.null(trueValue)){
names(trueValue)[names(trueValue) %in% alpha$alpha1] <- paste0(
names(trueValue)[names(trueValue) %in% alpha$alpha1],"_pop")
}
if(!is.null(alpha$alpha0)){
para0 = paste0(alpha$alpha0,"_pop")
}else{
para0 = c()
}
param.toprint = setdiff(union(mlx.getPopulationParameterInformation()$name[which(mlx.getPopulationParameterInformation()$method=="MLE")],union(para0,sapply(names(alpha$alpha1),FUN=function(yG){mlx.getContinuousObservationModel()$parameters[[yG]]},USE.NAMES = FALSE))),regParam.toprint) # the parameter to be estimated minus regParam.toprint
project.dir <- mlx.getProjectSettings()$directory
if (!dir.exists(project.dir))
dir.create(project.dir)
remix.dir <- file.path(mlx.getProjectSettings()$directory,"remix")
Sys.sleep(0.1)
if (!dir.exists(remix.dir))
dir.create(remix.dir)
Sys.sleep(0.1)
summary.file = file.path(remix.dir, "summary.txt")
unlink(summary.file,force=TRUE)
Sys.sleep(0.1)
########################## FIRST ESTIMATION ###########################
to.cat <- paste0("\n", dashed.line, " Starting Regulatization and Estimation Algorithm\n")
to.cat <- c(to.cat," \u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\u203E\n")
print_result(print,summary.file,to.cat,to.print=NULL)
initial.project <- paste0(remix.dir,"/",sub(".*/([^/]+)/([^/]+)\\.mlxtran", "\\2",project), "_init.mlxtran")
if (!grepl("\\.", initial.project))
initial.project <- paste0(initial.project, ".mlxtran")
if (!grepl("\\.mlxtran", initial.project))
stop(paste0(initial.project, " is not a valid name for a Monolix project (use the .mlxtran extension)"),call. = FALSE)
if(!selfInit){
pset1 <- list(nbexploratoryiterations = 200, nbsmoothingiterations = 50,
simulatedannealing = TRUE, smoothingautostop = TRUE, exploratoryautostop = TRUE)
if (!is.null(pop.set1))
pset1 <- modifyList(pset1, pop.set1[intersect(names(pop.set1),
names(pset1))])
pop.set1 <- mlx.getPopulationParameterEstimationSettings()
pop.set1 <- modifyList(pop.set1, pset1[intersect(names(pset1),
names(pop.set1))])
}
pset2 <- list(nbexploratoryiterations = 150, nbsmoothingiterations = 50, simulatedannealing = TRUE,
smoothingautostop = TRUE, exploratoryautostop = TRUE)
if (!is.null(pop.set2))
pset2 <- modifyList(pset2, pop.set2[intersect(names(pop.set2),
names(pset2))])
pop.set2 <- mlx.getPopulationParameterEstimationSettings()
pop.set2 <- modifyList(pop.set2, pset2[intersect(names(pset2),
names(pop.set2))])
suppressMessages({
check <- check.init(initial.project,pop.set1) # check if initialization step
if(identical(check,FALSE)){ # has been done according to
suppressMessages({ # the settings given
mlx.loadProject(project)
mlx.saveProject(initial.project)
})
check <- check.init(initial.project,pop.set1)
}
})
if(identical(check,FALSE) || !check$SAEM){
to.cat <- " - - - Running Initialization Step - - -\n\n"
to.cat <- c(to.cat,"Initialization using SAEM algorithm :\n")
to.cat <- c(to.cat," -",pop.set1$nbexploratoryiterations,"exploratory iterations;\n")
to.cat <- c(to.cat," -",pop.set1$nbsmoothingiterations,"smoothing iterations.\n\n")
print_result(print,summary.file,to.cat)
mlx.setPopulationParameterEstimationSettings(pop.set1)
to.cat <- "Estimation of the population parameters using the initial model ... \n"
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
mlx.runPopulationParameterEstimation()
to.cat <- "Estimation of the R.E. distribution using the initial model ... \n"
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
mlx.runConditionalDistributionSampling()
}else if(!check$MCMC){
to.cat <- " - - - Running Initialization Step - - -\n\n"
to.cat <- "Estimation of the R.E. distribution using the initial model ... \n"
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
mlx.runConditionalDistributionSampling()
}
mlx.saveProject(initial.project)
if (is.null(final.project)){
final.project <- paste0(sub(pattern = "(.*)\\..*$",
replacement = "\\1", project), "_upd.mlxtran")}
if (!grepl("\\.", final.project))
final.project <- paste0(final.project, ".mlxtran")
if (!grepl("\\.mlxtran", final.project))
stop(paste0(final.project, " is not a valid name for a Monolix project (use the .mlxtran extension)"),
call. = FALSE)
mlx.saveProject(final.project)
param0 <- param <- mlx.getEstimatedPopulationParameters()
########################## RENDER FIRST ESTIMATION ###########################
to.cat <- "\n - - - < INITIAL PARAMETERS > - - - \n\n"
to.print <- data.frame(EstimatedValue = sapply(param0,FUN=function(p){format(signif(p,digits=digits),scientific=TRUE)})[param.toprint])
row.names(to.print) <- param.toprint
if(!is.null(trueValue)){
to.print <- cbind(to.print,
TrueValue = format(signif(as.numeric(trueValue[param.toprint]),digits=digits),scientific = TRUE),
RelativeBias = round((param0[param.toprint]-as.numeric(trueValue[param.toprint]))/as.numeric(trueValue[param.toprint]),digits=digits))
}
print_result(print, summary.file, to.cat = to.cat, to.print = to.print)
to.cat <- "\n"
to.print <- data.frame(EstimatedValue = sapply(param0,FUN=function(p){format(signif(p,digits=digits),scientific = TRUE)})[regParam.toprint])
row.names(to.print) <- regParam.toprint
if(!is.null(trueValue)){
to.print <- cbind(to.print,
TrueValue = format(signif(as.numeric(trueValue[regParam.toprint]),digits=digits),scientific = TRUE),
RelativeBias = round((param0[regParam.toprint]-as.numeric(trueValue[regParam.toprint]))/as.numeric(trueValue[regParam.toprint]),digits=digits))
to.print[is.nan(to.print$RelativeBias) | is.infinite(to.print$RelativeBias),"RelativeBias"] <- " "
to.print[trueValue[regParam.toprint]==0,"TrueValue"] <- " "
to.print[param0[regParam.toprint]==0,"EstimatedValue"] <- " "
}
print_result(print, summary.file, to.cat = to.cat, to.print = to.print)
########################## ESTIMATING FIRST LL ###########################
to.cat <- "\nEstimating the log-likelihood, and its derivates, using the initial model ... \n"
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
currentData0 <- currentData <-
readMLX(project = final.project,ObsModel.transfo = ObsModel.transfo,alpha = alpha)
# FIRST ESTIMATE STORED = NULL
LL0 <- LL <-
gh.LL(dynFUN = dynFUN,y = y, data = currentData0, n = n,
prune = prune, parallel = FALSE)
LL0$ddLL <- LL$ddLL <- -inflate.H.Ariane(-LL0$ddLL,print=FALSE)
LL0.pen <- LL.pen <- LL0$LL - lambda*sum(abs(currentData0$alpha1))
to.cat <- paste0(" LL : ",round(LL$LL,digits=digits))
to.cat <- paste0(to.cat,"\n LL.pen : ",round(LL.pen,digits=digits),"\n")
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
suppressMessages({mlx.loadProject(final.project)})
a.ini <- a.ini0 <- currentData$alpha1
########################## SAVE OUTPUTS ###########################
estimates.outputs <- mlx.getChartsData("plotSaem")
if(length(setdiff(union(param.toprint,regParam.toprint),colnames(estimates.outputs)[-c(1,2,3)]))!=0){
for(p in setdiff(union(param.toprint,regParam.toprint),colnames(estimates.outputs)[-c(1,2,3)])){
estimates.outputs <- cbind(estimates.outputs,new=param[[p]])
colnames(estimates.outputs)[ncol(estimates.outputs)] <- p
}
}
LL.outputs <- list(LL0)
LLpen.outputs <- list(LL0.pen)
param.outputs <- param0
crit.outputs <- data.frame()
stop <- FALSE
iter = 0
crit1 <- crit2 <- critb <- 1
########################## ITERATION ###########################
while(!stop & iter<=max.iter){
iter <- iter + 1
############ START ITERATION ###########
to.cat <- paste0(" time elapsed : ",round((proc.time()-ptm)["elapsed"],digits=digits),"s\n")
to.cat <- c(to.cat,dashed.line)
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
to.cat <- c(" ITERATION ",iter,"\n\n")
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
ptm <- proc.time()
############ UPDATING ALPHA1 ###########
to.cat <- paste0("Computing taylor update for regularization parameters... \n")
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
a.final <- setNames(taylorUpdate(alpha = currentData$alpha1,lambda = lambda, dLL = LL0$dLL, ddLL = LL0$ddLL),names(currentData$alpha1))
currentData$alpha1 <- a.final
LLpen.aux <- gh.LL(dynFUN = dynFUN, y = y, data = currentData, n = n, prune = prune, parallel = FALSE,onlyLL=TRUE,verbose=verbose) - lambda * sum(abs(a.final))
if((LLpen.aux %in% c(-Inf,Inf) | LLpen.aux < LL0.pen) && !all(a.final==0)){
to.cat<-"\t/!\ [RECALIBRATION] /!\\n"
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
th <- 1
step <- log(1.5)
to.recalibrate = which(a.final!=0)
delta <- a.final[to.recalibrate] - a.ini[to.recalibrate]
maxt <- max(abs(delta))
if(maxt == 0){
vw <- th
}else{
vw <- th/maxt
}
res.out.error <- list("old.b" = a.ini[to.recalibrate],
"old.rl" = LL0.pen, # penalise en l'ancien
"old.ca" = critb, # que les alpha1 ici
"old.cb" = crit2) # pénalise aussi
# pas tres important, la en cas de plantage, rien d'autres
sears <- searpas(vw = vw,
step = step,
b = a.ini[to.recalibrate],
delta = delta,
funcpa = funcpa,
res.out.error = res.out.error,
dynFUN=dynFUN,
y = y,
data = currentData,
n = n,
prune = prune,
stored = NULL,
print=print,
to.recalibrate=to.recalibrate,
parallel = FALSE,
lambda = lambda)
a.final[to.recalibrate] <- a.ini[to.recalibrate] + delta*sears$vw
currentData$alpha1 <- a.final
LLpen.aux <- gh.LL(dynFUN = dynFUN, y = y, data = currentData, n = n, prune = prune, parallel = FALSE,onlyLL=TRUE,verbose=FALSE) - lambda * sum(abs(a.final))
}
to.print <- data.frame(EstimatedValue = format(signif(a.final,digits=digits),scientific=TRUE))
row.names(to.print) <- regParam.toprint
if(!is.null(trueValue)){
to.print <- cbind(to.print,
TrueValue = signif(as.numeric(trueValue[regParam.toprint]),digits=digits),
RelativeBias = round(as.numeric((a.final-trueValue[regParam.toprint])/trueValue[regParam.toprint]),digits=digits),
" " = ifelse(a.final==0, ifelse(trueValue[regParam.toprint]==0," \u2713"," \u2717"),
ifelse(trueValue[regParam.toprint]!=0," \u2713"," \u2717"))
)
to.print[is.nan(to.print$RelativeBias) | is.infinite(to.print$RelativeBias),"RelativeBias"] <- " "
to.print[trueValue[regParam.toprint]==0,"TrueValue"] <- " "
to.print[a.final==0,"EstimatedValue"] <- " "
}
print_result(print, summary.file, to.cat = NULL, to.print = to.print)
############ SAEM UPDATE ###########
to.cat <- paste0("\nComputing SAEM update for population parameters... \n")
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
re <- saemUpdate(project = final.project, final.project = final.project,
currentData = currentData,
alpha = alpha, a.final = a.final,iter = iter , pop.set = pop.set2,
conditionalDistributionSampling = TRUE, StandardErrors = FALSE)
estimates = re$SAEMiterations
if(length(setdiff(union(param.toprint,regParam.toprint),colnames(estimates)[-c(1,2,3)]))!=0){
for(p in setdiff(union(param.toprint,regParam.toprint),colnames(estimates)[-c(1,2,3)])){
estimates <- cbind(estimates,new=re$param[[p]])
colnames(estimates)[ncol(estimates)] <- p
}
}
to.print <- data.frame(EstimatedValue = sapply(re$param,FUN=function(p){format(signif(p,digits=digits),scientific=TRUE)})[param.toprint])
row.names(to.print) <- param.toprint
if(!identical(mlx.getEstimatedStandardErrors(),NULL)){
sd.est = mlx.getEstimatedStandardErrors()$stochasticApproximation
sd.est = sd.est[sd.est$parameter %in% param.toprint,"se"]
to.print <- cbind(to.print, CI_95 = paste0("[",format(signif(re$param[param.toprint]-1.96*sd.est,digits=digits),scientific=TRUE),";",format(signif(re$param[param.toprint]+1.96*sd.est,digits=digits),scientific=TRUE),"]"))
}
if(!is.null(trueValue)){
to.print <- cbind(to.print,
TrueValue = format(signif(as.numeric(trueValue[param.toprint]),digits=digits),scientific=TRUE),
RelativeBias = round(as.numeric((re$param[param.toprint]-trueValue[param.toprint])/trueValue[param.toprint]),digits=digits))
}
print_result(print, summary.file, to.cat = NULL, to.print = to.print)
param <- re$param
############ ESTIMATE PENALIZED ###########
to.cat <- paste0("\nEstimating penalised log-likelihood... \n")
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
currentData0 <- currentData <- readMLX(project = final.project,
ObsModel.transfo = ObsModel.transfo,
alpha = alpha)
LL <- gh.LL(dynFUN = dynFUN, y = y, data = currentData, n = n, prune = prune, parallel = FALSE,verbose=verbose)
LL$ddLL <- -inflate.H.Ariane(-LL$ddLL,print=FALSE)
LL.pen <- LL$LL - lambda* sum(abs(a.final))
to.cat <- paste0(" LL :",round(LL$LL,digits=digits))
to.cat <- paste0(to.cat,"\n LL.pen :",round(LL.pen,digits=digits),"\n")
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
############ UPDATE CRITERION ###########
crit1 = sum(((param0 - param)**2/(param**2+1)))
critb = sum((a.ini0-a.final)**2)
crit2 = abs(LL0.pen-LL.pen)
estimates.outputs <- rbind(estimates.outputs,estimates[,colnames(estimates.outputs)])
LL.outputs <- append(LL.outputs,list(LL))
LLpen.outputs <- append(LLpen.outputs,LL.pen)
param.outputs <- rbind(param.outputs,param)
to.cat <- c("\n\n Current parameter convergence criterion :",round(crit1,digits=digits),"\n")
to.cat <- c(to.cat," Current ll pen convergence criterion :",round(crit2,digits=digits),"\n")
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
crit.outputs <- rbind(crit.outputs,data.frame(iter=iter,crit1,critb,crit2))
if(crit1<eps1 && crit2 <eps2 ){
stop <- TRUE
}
LL0 <- LL
LL0.pen <- LL.pen
param0 <- param
a.ini0 <- a.ini <- a.final
}
if(finalSAEM){
to.cat <- paste0(" time elapsed : ",round((proc.time()-ptm)["elapsed"],digits=digits),"s\n")
to.cat <- c(to.cat,dashed.line)
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
to.cat <- c(" FINAL ITERATION \n\n")
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
ptm <- proc.time()
to.cat <- paste0("\nComputing final SAEM... \n")
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
re <- saemUpdate(project = final.project, final.project = final.project,
currentData=currentData,
alpha = alpha, a.final = a.final,iter = iter ,
pop.set = pop.set2, pop.setFinal = pop.set3,
conditionalDistributionSampling = TRUE,
StandardErrors = TRUE, finalSAEM = TRUE )
saemFinal <- re
############ ESTIMATE PENALIZED ###########
to.cat <- paste0("Estimating log-likelihood... \n")
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
currentData0 <- currentData <- readMLX(project = final.project,
ObsModel.transfo = ObsModel.transfo,
alpha = alpha)
LLfinal <- gh.LL(dynFUN = dynFUN, y = y, data = currentData, n = n, prune = prune, parallel = FALSE,verbose = verbose,onlyLL = TRUE)
estimatesfinal = re$SAEMiterations
if(length(setdiff(union(param.toprint,regParam.toprint),colnames(estimatesfinal)[-c(1,2,3)]))!=0){
for(p in setdiff(union(param.toprint,regParam.toprint),colnames(estimatesfinal)[-c(1,2,3)])){
estimates <- cbind(estimatesfinal,new=re$param[[p]])
colnames(estimatesfinal)[ncol(estimatesfinal)] <- p
}
}
################### RENDER FINAL ESTIMATION #########################
to.cat <- "\n - - - < FINAL PARAMETERS > - - - \n\n"
print_result(print,summary.file, to.cat = to.cat,to.print=NULL)
sd.est = re$standardErrors$stochasticApproximation[,-3]
if(length(setdiff(names(re$param),sd.est$parameter))!=0){
sd.est <- rbind(sd.est, data.frame(parameter=setdiff(names(re$param),sd.est$parameter),se=NA))
}
# paramtoPrint.FINAL = sd.est$parameter[sd.est$parameter %in% union(regParam.toprint,param.toprint)]
# sd.est = sd.est[sd.est$parameter %in% paramtoPrint.FINAL,"se"]
to.print <- data.frame(EstimatedValue = sapply(re$param,FUN=function(p){format(signif(p,digits=digits),scientific=TRUE)}))
sd.est <- merge(data.frame(parameter=names(re$param),EstimatedValue=unname(re$param)),sd.est,by="parameter")
sd.est <- cbind(sd.est,CI_95=sapply(1:nrow(sd.est),FUN=function(i){ifelse(!is.na(sd.est$se[i]),paste0("[",format(signif(sd.est$EstimatedValue[i]-1.96*sd.est$se[i],digits=digits),scientific=TRUE),";",format(signif(sd.est$EstimatedValue[i]+1.96*sd.est$se[i],digits=digits),scientific=TRUE),"]")," ")}))
rownames(sd.est) <- sd.est$parameter
sd.est <- sd.est[rownames(to.print),-1]
to.print <- dplyr::mutate(dplyr::mutate(sd.est,EstimatedValue = sapply(sd.est$EstimatedValue,FUN=function(p){format(signif(p,digits=digits),scientific=TRUE)})),se=sapply(sd.est$se,FUN=function(p){format(signif(p,digits=digits),scientific=TRUE)}))
to.print$se[to.print$se=="NA"] <- " "
if(!is.null(trueValue)){
to.print <- cbind(to.print,
TrueValue = format(signif(as.numeric(trueValue[rownames(to.print)]),digits=digits),scientific=TRUE),
RelativeBias = round(as.numeric((re$param[rownames(to.print)]-trueValue[rownames(to.print)])/trueValue[rownames(to.print)]),digits=digits))
}
paramfinal <- re$param
print_result(print, summary.file, to.cat = NULL, to.print = to.print)
if(test){
to.cat <- "\nComputing Wald test (with null hypothesis alpha1=0)...\n"
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
ST <- re$standardErrors$stochasticApproximation
ST <- merge(ST[ST$parameter %in% regParam.toprint,,drop=FALSE],data.frame(parameter=ST$parameter,ES=re$param[ST$parameter]),by="parameter")
ST <- dplyr::mutate(ST,stat.test=abs(ST$ES/ST$se))
ST <- dplyr::mutate(ST,p.value=2*(1-pnorm(stat.test)))
ST <- dplyr::mutate(ST," "=ifelse(p.value<=p.max,paste0("<",p.max)," "))
if(!is.null(trueValue)){
aux.print <- dplyr::mutate(merge(data.frame(parameter=rownames(to.print),dplyr::select(to.print,-RelativeBias)),ST[,c("parameter","stat.test","p.value"," ")],by="parameter",all.x = TRUE),stat.test=round(stat.test,digits=digits))
}else{
aux.print <- dplyr::mutate(dplyr::mutate(merge(data.frame(parameter=rownames(to.print),to.print),ST[,c("parameter","stat.test","p.value"," ")],by="parameter",all.x = TRUE),stat.test=round(stat.test,digits=digits)),p.value=round(p.value,digits=digits))
}
aux.print[is.na(aux.print$stat.test),"stat.test"] <- " "
aux.print[is.na(aux.print$p.value),"p.value"] <- " "
aux.print[is.na(aux.print$` `)," "] <- " "
rownames(aux.print) <- aux.print$parameter
aux.print <- dplyr::select(aux.print,-parameter)
to.print <- aux.print[rownames(to.print),]
to.print <- to.print[regParam.toprint,-2]
print_result(print, summary.file, to.cat = NULL, to.print = to.print)
if(any(ST$p.value>p.max)){
a.final[names(alpha$alpha1[which(alpha$alpha1 %in% stringr::str_remove_all(ST[ST$p.value>p.max,"parameter"],"_pop"))])] <- 0
to.cat <- paste0(" time elapsed : ",round((proc.time()-ptm)["elapsed"],digits=digits),"s\n")
to.cat <- c(to.cat,dashed.line)
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
to.cat <- c(" (re)FINAL ITERATION \n\n")
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
ptm <- proc.time()
to.cat <- paste0("\nComputing final SAEM... \n")
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
re <- saemUpdate(project = final.project, final.project = final.project,
currentData=currentData,
alpha = alpha, a.final = a.final,iter = iter ,
pop.set = pop.set2, pop.setFinal = pop.set3,
conditionalDistributionSampling = TRUE,
StandardErrors = TRUE, finalSAEM = TRUE)
############ ESTIMATE PENALIZED ###########
to.cat <- paste0("Estimating log-likelihood... \n")
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
currentData0 <- currentData <- readMLX(project = final.project,
ObsModel.transfo = ObsModel.transfo,
alpha = alpha)
LLfinal <- gh.LL(dynFUN = dynFUN, y = y, data = currentData, n = n, prune = prune, parallel = FALSE,verbose = verbose,onlyLL = TRUE)
estimatesfinal = re$SAEMiterations
if(length(setdiff(union(param.toprint,regParam.toprint),colnames(estimatesfinal)[-c(1,2,3)]))!=0){
for(p in setdiff(union(param.toprint,regParam.toprint),colnames(estimatesfinal)[-c(1,2,3)])){
estimates <- cbind(estimatesfinal,new=re$param[[p]])
colnames(estimatesfinal)[ncol(estimatesfinal)] <- p
}
}
################### RENDER FINAL ESTIMATION #########################
to.cat <- "\n - - - < FINAL PARAMETERS > - - - \n\n"
print_result(print,summary.file, to.cat = to.cat,to.print=NULL)
sd.est = re$standardErrors$stochasticApproximation[,-3]
sd.est <- rbind(sd.est, data.frame(parameter=setdiff(names(re$param),sd.est$parameter),se=NA))
# paramtoPrint.FINAL = sd.est$parameter[sd.est$parameter %in% union(regParam.toprint,param.toprint)]
# sd.est = sd.est[sd.est$parameter %in% paramtoPrint.FINAL,"se"]
to.print <- data.frame(EstimatedValue = sapply(re$param,FUN=function(p){format(signif(p,digits=digits),scientific=TRUE)}))
sd.est <- merge(data.frame(parameter=names(re$param),EstimatedValue=unname(re$param)),sd.est,by="parameter")
sd.est <- cbind(sd.est,CI_95=sapply(1:nrow(sd.est),FUN=function(i){ifelse(!is.na(sd.est$se[i]),paste0("[",format(signif(sd.est$EstimatedValue[i]-1.96*sd.est$se[i],digits=digits),scientific=TRUE),";",format(signif(sd.est$EstimatedValue[i]+1.96*sd.est$se[i],digits=digits),scientific=TRUE),"]")," ")}))
rownames(sd.est) <- sd.est$parameter
sd.est <- sd.est[rownames(to.print),-1]
to.print <- dplyr::mutate(dplyr::mutate(sd.est,EstimatedValue = sapply(sd.est$EstimatedValue,FUN=function(p){format(signif(p,digits=digits),scientific=TRUE)})),se=sapply(sd.est$se,FUN=function(p){format(signif(p,digits=digits),scientific=TRUE)}))
to.print$se[to.print$se=="NA"] <- " "
if(!is.null(trueValue)){
to.print <- cbind(to.print,
TrueValue = format(signif(as.numeric(trueValue[rownames(to.print)]),digits=digits),scientific=TRUE),
RelativeBias = round(as.numeric((re$param[rownames(to.print)]-trueValue[rownames(to.print)])/trueValue[rownames(to.print)]),digits=digits))
}
paramfinal <- re$param
print_result(print, summary.file, to.cat = NULL, to.print = to.print)
}
}else{
print_result(print, summary.file, to.cat = NULL, to.print = to.print)
}
to.cat <- "\n - - - < CRITERION > - - - \n"
to.cat <- paste0(to.cat," LL : ",round(LLfinal,digits=digits))
to.cat <- paste0(to.cat,"\n BIC : ",round(-2*LLfinal+log(N)*(sum(paramfinal[paste0(alpha$alpha1,"_pop")]!=0)+length(param.toprint)),digits=digits))
to.cat <- paste0(to.cat,"\n BICc : ",round(-2*LLfinal+log(ntot)*(sum(paramfinal[paste0(alpha$alpha1,"_pop")]!=0) + PFPR(param.toprint)$PF)+log(N)*PFPR(param.toprint)$PR,digits=digits),"\n")
print_result(print, summary.file, to.cat = to.cat, to.print = NULL)
############ outputs ###########
}else{
LLfinal <- LL$LL
paramfinal <- param
}
mlx.saveProject(final.project)
results <- list(info = list(project=final.project,
param.toprint=param.toprint,
regParam.toprint=regParam.toprint,
alpha=alpha,
lambda=lambda,
finalSAEM = finalSAEM,
test=if(finalSAEM){test}else{FALSE},
p.max=if(finalSAEM && test){p.max}else{NULL},
N=length(currentData$mu),
ntot = ntot),
finalRes=list(LL=LLfinal,
LL.pen = LL.pen,
param=paramfinal,
alpha=paramfinal[paste0(alpha$alpha1,"_pop")],
iter=iter,
time=(proc.time()-ptm.first)["elapsed"],
standardError=mlx.getEstimatedStandardErrors()$stochasticApproximation,
saemBeforeTest=if(finalSAEM && test){saemFinal}else{NULL}),
iterOutputs=list(param=param.outputs,
LL=LL.outputs,
LL.pen = LLpen.outputs,
estimates=estimates.outputs,
criterion = crit.outputs))
class(results) <- "remix"
if(parallel)
snow::stopCluster(cluster)
return(results)
}
# Inflation matrix from smoothhazard by Bercu -----------------------------
inflate.H.Ariane <- function(H,eps.eigen=10**(-5),print=FALSE){# inflation hessienne ; Merci Ariane ♥
tr <- sum(diag(H))/ncol(H)
eigen.values<-eigen(H,symmetric=TRUE,only.values=TRUE)$values
idpos<-ifelse(any(eigen.values<=eps.eigen),1,0) # nous avons besoin de faire la procédure d'inflation ?
idpos0<-idpos
ncount<-0
if(print){
cat("BEFORE -----------------\n")
cat("eigen.values :\n")
cat("\t",eigen.values,"\n\n")
}
while(idpos != 0){
if(print){cat("\n--------------------------------")
cat("\nncount =",ncount,"\n")}
if(ncount==0){ # La c'est le calcul des eta_k dans la formule, faite par Hiviane en pratique dans MLA
ga <- 0.01
da <- 1E-2
}else{
if(((ncount <= 3) | (ga >= 1)) ){
da <- da * 5
}else{
ga <- ga * 5
if(ga > 1) ga <- 1
}
}
if(print){
cat("ga =",ga,"; da =",da,"\n")
}
ncount <- ncount + 1
diagH <- diag(H)
# La formule de viviane :
diagH<-ifelse(diagH!=0,diagH+da*(abs((1.e0-ga))*abs(diagH)+ga*tr),
da*ga*tr)
diag(H)<-diagH
# la on élimine si la essienne a des valeurs infinie (erreur dans ces cas là et on sort de l'algorithme)
if(sum(H==Inf)>0|sum(H==-Inf)>0){stop("eigen values of hessienne undefined")}
eigen.values<-eigen(H,symmetric=TRUE,only.values=TRUE)$values
if(print){
cat("eigen.values :\n")
cat("\t",eigen.values,"\n\n")
}
# si on a pas réussi, on recommence
idpos<-ifelse(any(eigen.values<=eps.eigen),1,0)
}
if(idpos!=0){
stop("Hessian not defined positive and can't be infalted")
ite<-ite+1
pbr_compu<-2
}
return(H)}
# Chek --------------------------------------------------------------------
check.init <- function(initial.project,pop.set1){
initialValue <- NULL
IndividualParameterModel = mlx.getIndividualParameterModel()
PopulationParameterInformation = mlx.getPopulationParameterInformation()
ContinuousObservationModel = mlx.getContinuousObservationModel()
init.done = tryCatch({prcheck(initial.project)$project
TRUE },error=function(e){FALSE})
if(!init.done){
return(FALSE)
}else{
PopulationParameterSettings = mlx.getPopulationParameterEstimationSettings()
if(!identical(PopulationParameterSettings,pop.set1) ||
!identical(IndividualParameterModel,mlx.getIndividualParameterModel()) ||
!identical(dplyr::select(PopulationParameterInformation,-initialValue),dplyr::select(mlx.getPopulationParameterInformation(),-initialValue)) ||
!identical(ContinuousObservationModel, mlx.getContinuousObservationModel())){
unlink(mlx.getProjectSettings()$directory,recursive=TRUE,force=TRUE)
Sys.sleep(0.1)
return(FALSE)
}
}
LaunchedTask <- mlx.getLaunchedTasks()
return(list(SAEM=LaunchedTask$populationParameterEstimation,
MCMC=LaunchedTask$conditionalDistributionSampling))
}
check.proj <- function(project,alpha){
if (!is.null(project)){
project <- prcheck(project)$project
}else{
project <- mlx.getProjectSettings()$project}
IndividualParameterModel <- mlx.getIndividualParameterModel()
if(any(IndividualParameterModel$distribution[unlist(alpha)]!="normal")){
cmd = paste0("mlx.setIndividualParameterDistribution(",paste0(unlist(alpha),"='normal'",collapse=","),")")
eval(parse(text=cmd))
message("[INFO] Distribution of alpha parameters have been switched to normal.")
}
ContinuousObservationModel <- mlx.getContinuousObservationModel()
if(any(ContinuousObservationModel$errorModel!="constant")){
cmd = paste0("mlx.setErrorModel(list(",paste0(names(ContinuousObservationModel$errorModel),"='constant'",collapse=","),"))")
eval(parse(text=cmd))
message("[INFO] Error Model have been switched to constant.")
}
return(invisible(TRUE))
}
# Update ------------------------------------------------------------------
saemUpdate <- function(project = NULL,final.project=NULL,
currentData,
alpha, a.final,
iter=NULL,
pop.set=NULL,
pop.setFinal = NULL,
conditionalDistributionSampling = FALSE,
StandardErrors = FALSE,
finalSAEM = FALSE){
suppressMessages({
if (!is.null(project)){
project <- prcheck(project)$project
}else{
project <- mlx.getProjectSettings()$project
}
mlx.loadProject(project)
})
if (is.null(final.project)){
final.project <- paste0(sub(pattern = "(.*)\\..*$",
replacement = "\\1", project), "_upd.mlxtran")
}
if (!grepl("\\.", final.project))
final.project <- paste0(final.project, ".mlxtran")
if (!grepl("\\.mlxtran", final.project))
stop(paste0(final.project, " is not a valid name for a Monolix project (use the .mlxtran extension)"),
call. = FALSE)
if(finalSAEM){
pset <- list(nbsmoothingiterations=200,nbexploratoryiterations=500,
simulatedannealing=TRUE, smoothingautostop=TRUE,exploratoryautostop=TRUE)
if(!is.null(pop.setFinal))
pset <- modifyList(pset, pop.setFinal[intersect(names(pop.setFinal),
names(pset))])
pop.set <- mlx.getPopulationParameterEstimationSettings()
pop.set <- modifyList(pop.set, pset[intersect(names(pset), names(pop.set))])
}else{
pset <- list(nbsmoothingiterations=50,nbexploratoryiterations=50,
simulatedannealing=TRUE, smoothingautostop=TRUE,exploratoryautostop=TRUE)
if(!is.null(pop.set))
pset <- modifyList(pset, pop.set[intersect(names(pop.set),
names(pset))])
pop.set <- mlx.getPopulationParameterEstimationSettings()
pop.set <- modifyList(pop.set, pset[intersect(names(pset), names(pop.set))])
}
mlx.setInitialEstimatesToLastEstimates(fixedEffectsOnly = FALSE)
# Update of alpha_0 and sigma of non selected genes by MLE classical estimation
MLE = list()
for(k in 1:length(alpha$alpha1)){
yGk = names(alpha$alpha1)[k]
Yk = currentData$Robs[[yGk]][,yGk]
if(is.null(alpha$alpha0)){
MLE[[k]] <- list(estimate=c(mean=0,
sd=sd(Yk)*sqrt((length(Yk)-1)/length(Yk))),
sd=c(mean=1e-5,
sd=sd(Yk)*sqrt((length(Yk)-1)/length(Yk))/sqrt(2*length(Yk))))
}else{
MLE[[k]] <- list(estimate=c(mean=mean(Yk),
sd=sd(Yk)*sqrt((length(Yk)-1)/length(Yk))),
sd=c(mean=sd(Yk)*sqrt((length(Yk)-1)/length(Yk))/sqrt(length(Yk)),
sd=sd(Yk)*sqrt((length(Yk)-1)/length(Yk))/sqrt(2*length(Yk))))
}
if(a.final[k]==0){
if(!is.null(alpha$alpha0)){
# eval(parse(text=paste0("a <-list(",alpha$alpha0[k],"_pop=list(initialValue=",MLE[[k]]$estimate[["mean"]],",method='FIXED'))")))
a <- data.frame(name=paste0(alpha$alpha0[k],"_pop"),
initialValue=MLE[[k]]$estimate[["mean"]],
method="FIXED")
mlx.setPopulationParameterInformation(a)
}
a <- data.frame(name=mlx.getContinuousObservationModel()$parameter[[yGk]],
initialValue=MLE[[k]]$estimate[["sd"]],
method="FIXED")
mlx.setPopulationParameterInformation(a)
}else{
if(!is.null(alpha$alpha0)){
a <- data.frame(name=paste0(alpha$alpha0[k],"_pop"),
method="MLE")
mlx.setPopulationParameterInformation(a)
}
a <- data.frame(name=mlx.getContinuousObservationModel()$parameter[[yGk]],
method="MLE")
mlx.setPopulationParameterInformation(a)
}
}
MLE <- setNames(MLE,names(alpha$alpha0))
if(finalSAEM){
for(k in 1:length(alpha$alpha1)){
if(a.final[k]==0){
a <- data.frame(name=paste0(alpha$alpha1[k],"_pop"),
initialValue=0,
method="FIXED")
mlx.setPopulationParameterInformation(a)
}else{
a <- data.frame(name=paste0(alpha$alpha1[k],"_pop"),
method="MLE")
mlx.setPopulationParameterInformation(a)
}
}
}else{
for(k in 1:length(alpha$alpha1)){
a <- data.frame(name=paste0(alpha$alpha1[k],"_pop"),
initialValue = a.final[k],
method="FIXED")
mlx.setPopulationParameterInformation(a)
}
}
mlx.setPopulationParameterEstimationSettings(pop.set)
mlx.saveProject(final.project)
mlx.runPopulationParameterEstimation()
if(conditionalDistributionSampling){
mlx.runConditionalDistributionSampling()
}
if(StandardErrors){
mlx.runStandardErrorEstimation()
se = mlx.getEstimatedStandardErrors()
if(!is.null(alpha$alpha0)){
se$stochasticApproximation <- rbind(se$stochasticApproximation,
data.frame(parameter = paste0(unname(alpha$alpha0[names(which(a.final==0))]),"_pop"),
se = sapply(names(which(a.final==0)),FUN=function(yGk){MLE[[yGk]]$sd[["mean"]]}),
rse = sapply(names(which(a.final==0)),FUN=function(yGk){MLE[[yGk]]$sd[["mean"]]/MLE[[yGk]]$estimate[["mean"]]*100}),row.names = 1:length(which(a.final==0))))
}
se$stochasticApproximation <- rbind(se$stochasticApproximation,
data.frame(parameter = unlist(unname(mlx.getContinuousObservationModel()$parameter[names(which(a.final==0))])),
se = sapply(names(which(a.final==0)),FUN=function(yGk){MLE[[yGk]]$sd[["sd"]]}),
rse = sapply(names(which(a.final==0)),FUN=function(yGk){MLE[[yGk]]$sd[["sd"]]/MLE[[yGk]]$estimate[["sd"]]*100}),row.names = 1:length(which(a.final==0))))
}else{
se = NULL
}
mlx.saveProject(final.project)
re = list(SAEMiterations = mlx.getChartsData("plotSaem"),
param = mlx.getEstimatedPopulationParameters(),
standardErrors=se)
return(re)
}
taylorUpdate <- function(alpha,lambda,ddLL,dLL){
# check ; size of alpha and ddLL, dLL
K = length(alpha)
X = -ddLL
value.test = dLL + diag(X)*alpha
alpha.new = sapply(1:K,FUN = function(k){
if( value.test[k] < - lambda){
alpha = alpha[k] + (dLL[k]+lambda)/X[k,k]
}else if(value.test[k] > lambda ){
alpha = alpha[k] + (dLL[k]-lambda)/X[k,k]
}else{
alpha = 0
}
})
return(alpha.new)
}
print_result <- function (print, summary.file, to.cat = NULL, to.print = NULL)
{
if (file.exists(summary.file))
sink(summary.file, append = TRUE)
else sink(summary.file)
if (!is.null(to.cat))
cat(to.cat)
if (!is.null(to.print))
print(to.print)
sink()
if (print) {
if (!is.null(to.cat))
cat(to.cat)
if (!is.null(to.print))
print(to.print)
}
}
PFPR <- function(param.toprint){
omega = param.toprint[stringr::str_detect(param.toprint,"omega_")]
corr = param.toprint[stringr::str_detect(param.toprint,"corr_")]
beta = param.toprint[stringr::str_detect(param.toprint,"beta_") & sub("^[^_]*_(.*)_[^_]*$", "\\1", param.toprint) %in% stringr::str_remove_all(omega,"omega_")]
REP = Reduce(union,list(omega,corr,beta))
FEP = setdiff(param.toprint,REP) # avec les alpha1 en moins car compté à part
PF = length(FEP)
PR = length(REP)
return(list(PF=PF,PR=PR))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.