R/msq.itemfit.R

Defines functions msq.itemfit

Documented in msq.itemfit

## File Name: msq.itemfit.R
## File Version: 9.37

#--- Item fit mean squares statistics
msq.itemfit <- function( object, fitindices=NULL)
{
    s1 <- Sys.time()
    CALL <- match.call()

    #--- collect necessary input
    resp <- IRT.data(object)
# a0 <- Sys.time()
    res <- predict(object)
    irf1 <- IRT.irfprob(object)
    irf1[ is.na(irf1) ] <- 0
    post1 <- IRT.posterior(object)
    NI <- dim(res$probs.categ)
    I <- NI[4]
    TP <- NI[3]
    K <- NI[2]
    N <- NI[1]
    fititem <- FALSE
    if ( is.null(fitindices) ){
        fitindices <- seq(1,I)
        fititem <- TRUE
    }

    #---- include fit statistic in Rcpp
    fitgroups <- unique( fitindices)
    FF <- length(fitgroups)
    fitindices <- match( fitindices, fitgroups )
    fitIndexM0 <- fitIndexM <- cbind( seq(1, length(fitindices) ), fitindices )
    m1 <- order(fitIndexM[,2] )
    fitIndexM <- as.matrix( fitIndexM[ m1, ] - 1)
    fitIndexM0 <- as.matrix( fitIndexM0[ m1, ] )
    fitIndexTable <- matrix( 0, nrow=FF, ncol=3 )
    fitIndexTable[,1] <- 1:FF
    fitIndexTable[,2] <- sapply( 1:FF, FUN=function(ff){
                    g1 <- which( fitIndexM0[,2]==ff )
                    return(g1[1])
                            } )
    fitIndexTable[,3] <- sapply( 1:FF, FUN=function(ff){
                    g1 <- max( which( fitIndexM0[,2]==ff )  )
                    return(g1)
                            } )
    FIT_ <- as.matrix( fitIndexTable - 1 )

    dfr <- data.frame( "fitgroup"=fitgroups )
    if (fititem){
        dfr <- cbind( "item"=colnames(resp), dfr )
    }

    irf1_ <- as.numeric(irf1)
    resp_bool <- ! is.na(resp)
    res0 <- tam_rcpp_msq_itemfit( resp=resp, irf1=irf1_, K=K, TP=TP, post1=post1,
                        FIT=FIT_, fitIndexM=fitIndexM, resp_bool=resp_bool )
    res0 <- as.data.frame(res0)
    colnames(res0) <- c("Outfit", "Outfit_t", "Infit", "Infit_t")
    dfr <- cbind( dfr, res0)

    #---   compute p values
    dfr$Outfit_p <- 2 * stats::pnorm( -abs( dfr$Outfit_t ))
    dfr$Infit_p <- 2 * stats::pnorm( -abs( dfr$Infit_t ))
    # arrange columns in data frame
    cdfr <- colnames(dfr)
    ind <- c( grep( "Outfit", cdfr ),  grep( "Infit", cdfr ) )
    ind <- c( setdiff( seq(1,ncol(dfr) ), ind ), ind )
    dfr <- dfr[,ind]
    # summary statistic
    vars <- c("Outfit", "Infit")
    dfr2 <- data.frame( "fit"=vars, "M"=colMeans(dfr[,vars]),
                    "SD"=apply( dfr[,vars], 2, stats::sd ) )
    s2 <- Sys.time()
    v1 <- c(s1, s2)
    res <- list( itemfit=dfr, summary_itemfit=dfr2,    time=v1, CALL=CALL )
    class(res) <- "msq.itemfit"
    return(res)
}

# cat("predict function\n"); a1 <- Sys.time() ; print(a1-a0); a0 <- a1

Try the TAM package in your browser

Any scripts or data that you put into this service are public.

TAM documentation built on May 29, 2024, 2:20 a.m.