R/tam.fa.R

Defines functions tam.fa

Documented in tam.fa

## File Name: tam.fa.R
## File Version: 9.261


#---- Exploratory Factor Analysis and Bifactor Models
tam.fa <- function( resp, irtmodel, dims=NULL, nfactors=NULL,
            pid=NULL,pweights=NULL, verbose=TRUE, control=list(), ... )
{
    require_namespace_msg("GPArotation")
    require_namespace_msg("psych")
    disp <- "....................................................\n"
    increment.factor <- progress <- nodes <- snodes <- ridge <- xsi.start0 <- QMC <- NULL
    maxiter <- conv <- convD <- min.variance <- max.increment <- Msteps <- convM <- NULL

    #**** handle verbose argument
    args_CALL <- as.list( sys.call() )
    if ( ! tam_in_names_list( list=control, variable="progress" )     ){
        control$progress <- tam_args_CALL_search( args_CALL=args_CALL, variable="verbose",
                                default_value=TRUE )
    }
    #*******

    # attach control elements
    e1 <- environment()
    con <- list( nodes=seq(-6,6,len=21), snodes=1500,QMC=TRUE,
                convD=.001,conv=.0001, convM=.0001, Msteps=4,
                maxiter=1000, max.increment=1,
                min.variance=.001, progress=TRUE, ridge=0,seed=NULL,
                xsi.start0=FALSE, increment.factor=1)
    con[ names(control) ] <- control
    Lcon <- length(con)
    con1a <- con1 <- con ;
    names(con1) <- NULL
    for (cc in 1:Lcon ){
        assign( names(con)[cc], con1[[cc]], envir=e1 )
    }
    if ( !is.null(con$seed)){ set.seed( con$seed )     }
    maxK <- max(resp,na.rm=TRUE)

    #--- irtmodel=bifactor 1 or bifactor2
    if (irtmodel %in% c("bifactor1","bifactor2")){
        dim.names <- sort( unique(paste(dims) ))
        dim.names <- dim.names[ dim.names!="NA" ]
        dims.num <- match( dims, dim.names )
        D <- length( unique(dim.names))
        # define Q matrix for bifactor model
        I <- ncol(resp)
        Q <- matrix( 0, I, D+1 )
        Q[,1] <- 1
        for (dd in 1:D){
            Q[dims.num==dd,dd+1] <- 1
        }
        rownames(Q) <- colnames(resp)
        colnames(Q) <- c("g", dim.names )
        # variance constraints
        variance.fixed <- NULL
        if (irtmodel=="bifactor2"){
            variance.fixed <- cbind( 1:(D+1), 1:(D+1), 1 )
        }
        for (dd in 1:D){
            v1 <- cbind( dd, seq(dd+1, D+1), 0 )
            variance.fixed <- rbind( variance.fixed, v1 )
        }
    }

    #--- irtmodel=efa
    # exploratory factor analysis
    if (irtmodel %in% c("efa")){
        D <- nfactors
        # define Q matrix for bifactor model
        I <- ncol(resp)
        Q <- matrix( 1, I, D )
        Q[,1] <- 1
        for (dd in 2:D){
            Q[ seq(1,dd-1), dd ] <- 0
                    }
        rownames(Q) <- colnames(resp)
        colnames(Q) <- paste0("Dim",1:D)
        # variance constraints
        variance.fixed <- cbind( 1:D, 1:D, 1 )
        for (dd in 1:(D-1) ){
            v1 <- cbind( dd, seq(dd+1, D), 0 )
            variance.fixed <- rbind( variance.fixed, v1 )
        }
    }

    #--- define item response model
    irtmodel2 <- if (maxK==1){"2PL" } else {"GPCM" }

    #--- estimate model
    if ( irtmodel %in% c("bifactor2","efa") ){
        res <- tam.mml.2pl( resp=resp, Q=Q, irtmodel=irtmodel2,
                    variance.fixed=variance.fixed, pid=pid,
                    pweights=pweights, control=con, ... )
    }
    if ( irtmodel=="bifactor1"){
        res <- tam.mml( resp=resp, Q=Q, variance.fixed=variance.fixed, pid=pid,
                    pweights=pweights, control=con, ... )
    }
    #****
    # calculate standardized loadings
    B <- res$B
    B <- B[,2,]
    # B for Rasch testlet model
    if (irtmodel=="bifactor1"){
        Bsd <- sqrt( diag( res$variance ) )
        B <- B * matrix( Bsd, nrow=nrow(B), ncol=ncol(B), byrow=TRUE)
    }
    itemvariance <- rowSums( B^2 ) + 1.7^2    # add logistic variance
    itemvariance <- matrix( itemvariance, nrow=nrow(B), ncol=ncol(B), byrow=FALSE)
    if (irtmodel %in% c("bifactor1","bifactor2","efa") ){
        B.stand <- B / sqrt( itemvariance )
    }
    res$B.stand <- B.stand
    res$itemvariance <- itemvariance

    # oblimin rotation in exploratory factor analysis
    if (irtmodel=="efa"){
        res$efa.oblimin <- GPArotation::oblimin(A=B.stand)
        # Schmid Leiman transformation
        corrmatr <- tcrossprod( B.stand )
        diag(corrmatr) <- 1
        sl.sol <- psych::schmid(model=corrmatr, nfactors=nfactors )
        res$B.SL <- B.stand <- sl.sol$sl[, seq(1,nfactors+1) ]
    }

    res$irtmodel <- irtmodel
    #****
    # calculate dimensionality/reliability measures
    res$meas <- tam_fa_reliability_measures( B.stand=B.stand,
                    itemvariance=itemvariance, xsi=res$xsi, maxK=maxK )
    #--- output
    return(res)
}

Try the TAM package in your browser

Any scripts or data that you put into this service are public.

TAM documentation built on May 29, 2024, 2:20 a.m.