R/tam.fit.R

Defines functions FitMatrix.facets tam.mml.fit tam.fit

Documented in tam.fit tam.mml.fit

## File Name: tam.fit.R
## File Version: 9.171
tam.fit <- function( tamobj, ... )
{
    CALL <- match.call()
    if(inherits(tamobj,"tam.mml")){
        res <- tam.mml.fit( tamobj, ...)
    }
    if(inherits(tamobj,"tam.jml")){
        res <- tam.jml.fit( tamobj, ...)
    }
    res$CALL <- CALL
    class(res) <- 'tam.fit'
    return(res)
}

tam.mml.fit <- function( tamobj, FitMatrix=NULL, Nsimul=NULL, progress=TRUE,
     useRcpp=TRUE, seed=NA, fit.facets=TRUE )
{
    s1 <- Sys.time()
    #####################################################
    # INPUT:
    # tamobj ... result from tam analysis
    # FitMatrix is the fit design matrix. If it's NULL, then we will use the A matrix.
    # MW: We need to check whether this works when there are missing responses.
    # progress ... fit progress
    ####################################################

    old_seed <- .Random.seed
    this_envir <- environment()

    if ( ! is.na(seed) ){
        set.seed(seed)
    }

    if ( is.null(Nsimul) ){
        nstud <- tamobj$nstud
        Nsimul <- 5
        if ( nstud < 3000 ){ Nsimul <- 15 }
        if ( nstud < 1000 ){ Nsimul <- 40 }
        if ( nstud < 400 ){ Nsimul <- 100 }
    }
    if (progress){
        cat( paste0("Item fit calculation based on ", Nsimul, " simulations\n") )
    }

    resp <- tamobj$resp
    rprobs <- tamobj$rprobs

    indexIP.list <- tamobj$indexIP.list
    hwt <- tamobj$hwt
    resp.ind <- tamobj$resp.ind
    nnodes <- nrow(tamobj$theta)
    pweights <- tamobj$pweights
    nstud <- tamobj$nstud
    nitems <- tamobj$nitems
    maxK <- tamobj$maxK


#    if( "formulaA" %in% names(tamobj) ) warning("tam.fit is experimental for objects obtained by tam.mml.mfr.")
    if ( is.null(FitMatrix) ) {
      FitMatrix <- tamobj$A
               }
    if( ( "formulaA" %in% names(tamobj) ) & ( fit.facets )){
        FitMatrix2 <- FitMatrix.facets(tamobj)
        F1 <- dim(FitMatrix)[[3]]
        F2 <- dim(FitMatrix2)[[3]]
        FitMatrix3 <- array( 0, dim=c( dim(FitMatrix)[[1]],
                dim(FitMatrix)[[2]], F1+F2) )
        dimnames(FitMatrix3)[[1]] <- dimnames(FitMatrix)[[1]]
        dimnames(FitMatrix3)[[2]] <- dimnames(FitMatrix)[[2]]
        dimnames(FitMatrix3)[[3]] <- c( dimnames(FitMatrix)[[3]],
                dimnames(FitMatrix2)[[3]] )
        FitMatrix3[,,1:F1] <- FitMatrix
        FitMatrix3[,,(F1+1):(F1+F2)] <- FitMatrix2
        FitMatrix3 <- FitMatrix3[,, paste(tamobj$xsi.facets$parameter) ]
        FitMatrix <- FitMatrix3
                    }

    col.index <- rep( 1:nitems, each=maxK )
    cResp <- resp[, col.index  ]*resp.ind[, col.index ]
    cResp <- 1 * t( t(cResp)==rep(0:(maxK-1), nitems) )
    cF <- t( matrix( aperm( FitMatrix, c(2,1,3) ), nrow=dim(FitMatrix)[3], byrow=TRUE ) )
    cF[is.na(cF)] <- 0
    cResp[ is.na(cResp) ] <- 0
    # sufficient statistics by person by parameter, for Fit design matrix.
    ParamScore <- (cResp %*% cF)

    np <- dim(FitMatrix)[3]  #The parameter dimension
    indexIP <- colSums( aperm( FitMatrix, c(2,1,3) ) !=0, na.rm=TRUE )

    # define list of elements for item parameters
    indexIP.list <- list( 1:np )
    for ( kk in 1:np ){
      indexIP.list[[kk]] <- which( indexIP[,kk] > 0 )
    }

    Outfit <- rep(0,np)
    Infit <- rep(0,np)
    Outfit_t <- rep(0,np)
    Infit_t <- rep(0,np)
    if (progress){
      cat(paste( "|", paste(rep("*", 10 ), collapse=""), "|\n|",sep="") )
      prbar <- round( seq( 1, np, len=10 ) )
    }

    N <- nrow(hwt)
    rn1M <- matrix( stats::runif(N*Nsimul), nrow=N, ncol=Nsimul )


    for (p in 1:np) {
      ip <- indexIP.list[[p]]
      xbari <- sapply( ip, function(i) colSums(FitMatrix[i,,p] * rprobs[i,,], na.rm=TRUE ))
      #... TK: multiple category option -> na.rm=TRUE
      xxfi <- sapply( ip, function(i) colSums(FitMatrix[i,,p]^2 * rprobs[i,,], na.rm=TRUE ))
      vari <- xxfi - xbari^2
      xxxfi <- sapply( ip, function(i) colSums((FitMatrix[i,,p])^3 * rprobs[i,,], na.rm=TRUE ))
      xxxxfi <- sapply( ip, function(i) colSums(FitMatrix[i,,p]^4 * rprobs[i,,], na.rm=TRUE ))
      C4i <- xxxxfi - 4*xbari*xxxfi + 6*(xbari^2)*xxfi - 3*(xbari^4)
      Vz2i <- C4i - vari^2
      Uz2i <- C4i/(vari^2) - 1

      xbar <- tcrossprod( resp.ind[,ip],  xbari )
      var1 <- tcrossprod( resp.ind[,ip],  vari )
      Vz2 <- tcrossprod( resp.ind[,ip],  Vz2i )
      Uz2 <- tcrossprod( resp.ind[,ip],  Uz2i )

      Ax <- matrix(rep(ParamScore[,p],nnodes),nrow=nstud, ncol=nnodes)

      c_hwt <- rowCumsums.TAM(hwt)

      Outfit_SIM <- Infit_SIM <- rep(NA, Nsimul )
      Infit_t_SIM <- Outfit_t_SIM <- rep(NA,Nsimul )

      #calculate number of students per item parameter
#      nstud.ip <- sum( rowMeans( resp.ind[, ip, drop=FALSE],na.rm=TRUE ), na.rm=TRUE )
      if (TRUE){
        nstud.ip <- rowSums( resp.ind[, ip, drop=FALSE],na.rm=TRUE )
        nstud.ip <- sum( 1*(nstud.ip > 0))
                }


      if ( ! useRcpp ){

          #*******
          # start simulation
          for ( hh in 1:Nsimul ){
                #hh <- 1
              rn1 <- rn1M[,hh]
              nthetal <- rep(1,ncol(c_hwt))
              j <- rowSums( c_hwt < rn1)
              j[ j==0 ] <- 1
              NW <- ncol(c_hwt)
              j <- j + 1
              j[ j > NW ] <- NW
              s <- cbind(seq(1:N),j)
              wt_numer <- ( Ax[s] - xbar[s] )^2
              wt_denom <- var1[s]
              z2 <- wt_numer/wt_denom
              varz2 <- Uz2[s]
              wt_var <- Vz2[s]
                  #**********************************
                  # simulated quantities:
                  # wt_numer
                  # wt_denom
                  # z2
                  # varz2
                  # wt_var
                  #**********************************

              # end simulation
              #****************************************

              #Outfit MNSQ (unweighted fit)

              #    z2[z2 > 10*sd(z2)] <- 10*sd(z2)  #Trim extreme values

              Outfit[p] <- sum( z2*pweights, na.rm=TRUE  ) / nstud.ip
              Outfit_SIM[hh] <- Outfit[p]

              #Infit MNSQ (weighted fit)
              Infit[p] <- sum( wt_numer*pweights,na.rm=TRUE )/sum(wt_denom*pweights,na.rm=TRUE  )
              Infit_SIM[hh] <- Infit[p]

              #Infit t
              vf <- sum(wt_var*pweights,na.rm=TRUE )/(sum(wt_denom*pweights,na.rm=TRUE)^2 )
              Infit_t[p] <- (Infit[p]^(1/3)-1) * 3/sqrt(vf) + sqrt(vf)/3
              Infit_t_SIM[hh] <- Infit_t[p]

              #Outfit t
              vf2 <- sum(varz2*pweights,na.rm=TRUE )/(nstud.ip^2)
              Outfit_t[p] <- (Outfit[p]^(1/3)-1) * 3/sqrt(vf2) + sqrt(vf2)/3
              Outfit_t_SIM[hh] <- Outfit_t[p]
          }
                }

    #--- calculate fit in Rcpp
    if ( useRcpp ){
        res0 <- tam_rcpp_fit_simul( rn1M=rn1M, c_hwt=c_hwt, Ax=Ax, xbar=xbar,
                    var1=var1, Uz2=Uz2, Vz2=Vz2, nstud_ip=nstud.ip, pweights=pweights )
        Outfit_SIM <- res0$Outfit_SIM
        Infit_SIM <- res0$Infit_SIM
        Infit_t_SIM <- res0$Infit_t_SIM
        Outfit_t_SIM <- res0$Outfit_t_SIM
    }

      Outfit[p] <- mean( Outfit_SIM)
      Infit[p] <- mean( Infit_SIM)
      Infit_t[p] <- mean( Infit_t_SIM )
      Outfit_t[p] <- mean( Outfit_t_SIM )

    #****
    # include dimnames for FitMatrix if missing
    if ( is.null( dimnames(FitMatrix) ) ){
        nd <- dim(FitMatrix)[3]
        dimnames(FitMatrix)[[3]] <- paste0("parm", 1:nd)
            }
    #****

    if (progress){
        if ( p %in% prbar ){
               cat("-") ; utils::flush.console()
                            }
                        }

    }
    if (progress){ cat("|\n") ; utils::flush.console() }
    res <- data.frame(
        "parameter"=dimnames(FitMatrix)[[3]],
                      "Outfit"=Outfit,
                      "Outfit_t"=Outfit_t,
                      "Outfit_p"=2*stats::pnorm(-abs(Outfit_t)),
                      "Outfit_pholm"=NA,
                      "Infit"=Infit,
                      "Infit_t"=Infit_t,
                      "Infit_p"=2*stats::pnorm(-abs(Infit_t)),
                      "Infit_pholm"=NA
                            )
    res$Outfit_pholm <- stats::p.adjust( res$Outfit_p, method="holm")
    res$Infit_pholm <- stats::p.adjust( res$Infit_p, method="holm")
    #--- set seed back to previous values
    # assign(".Random.seed", old_seed,
    #            envir=parent.env(this_envir) )
    # assign(".Random.seed", old_seed, envir=globalenv())

    #data.frame( "Outfit"=round(Outfit,2), "Outfit_t"=round(Outfit_t,1), "Infit"=round(Infit,2), Infit_t=round(Infit_t,1) )

    s2 <- Sys.time()
    v1 <- c(s1, s2 )

    #--- output
    res <- list( "itemfit"=res, time=v1 )
    class(res) <- "tam.fit"
    return(res)
}


########################################
# create FitMatrix for facets

FitMatrix.facets <- function(tamobj){
    xsi.constraints <- tamobj$xsi.constr$xsi.constraints
    A <- tamobj$A
    XX <- nrow(xsi.constraints)
    A.ext <- array( 0, dim=c( dim(A)[1],dim(A)[2], XX ) )
    dimnames(A.ext)[[1]] <- dimnames(A)[[1]]
    dimnames(A.ext)[[2]] <- dimnames(A)[[2]]
    dimnames(A.ext)[[3]] <- rownames(xsi.constraints)
    for (pp in 1:XX){
        # pp <- 2
        xx <- xsi.constraints[pp,]
        VV <- dim(A)[3]
        Axx <- 0
        for (vv in 1:VV){
            Axx <- Axx + xx[vv] * A[,,vv]
                        }
        A.ext[,,pp] <- Axx
                }
    return(A.ext)
        }

Try the TAM package in your browser

Any scripts or data that you put into this service are public.

TAM documentation built on May 29, 2024, 2:20 a.m.