R/tam_mml_mstep_regression.R

Defines functions tam_mml_mstep_regression

## File Name: tam_mml_mstep_regression.R
## File Version: 9.497


# mstep.regression
tam_mml_mstep_regression <- function( resp, hwt,  resp.ind,
    pweights, pweightsM, Y, theta, theta2, YYinv, ndim,
    nstud, beta.fixed, variance, Variance.fixed, group, G,
    snodes=0, thetasamp.density=NULL, nomiss=FALSE, iter=1E9,
    min.variance=0, userfct.variance=NULL,
    variance_acceleration=NULL, est.variance=TRUE, beta=NULL,
    latreg_use=FALSE, gwt=NULL, importance_sampling=FALSE )
{
    variance.fixed <- Variance.fixed
    beta_old <- beta
    variance_old <- variance
    itemwt <- NULL
    #----- numerical integration
    if ( snodes==0){
        hwt_colsums <- colSums(hwt*pweights)
        if (!latreg_use){
            if ( ! nomiss ){
                itemwt <- crossprod( hwt, resp.ind * pweightsM  )
            }
            if ( nomiss ){
                itemwt <- matrix( hwt_colsums, nrow=ncol(hwt), ncol=ncol(resp.ind) )
            }
        }
        thetabar <- hwt %*% theta
        sumbeta <- crossprod( Y, thetabar*pweights )
        sumsig2 <- as.vector( crossprod( hwt_colsums, theta2 ) )
    }
    #----- Monte Carlo integration
    if ( snodes > 0 ){
        if (importance_sampling){
            hwt0 <- hwt / gwt    # likelihood
            TP <- length(thetasamp.density)
            tsd <- tam_matrix2( thetasamp.density, nrow=nstud, ncol=TP)
            rej_prob <- gwt / tsd
            rnm <- tam_matrix2( stats::runif(TP), nrow=nstud, ncol=TP )
            hwt_acc <- 1 * ( rej_prob > rnm    )
            hwt <- tam_normalize_matrix_rows( hwt0 * tsd * hwt_acc )
        }

        if ( ! latreg_use){
            hwt <- hwt / rowSums( hwt )   # maybe this can be fastened
            itemwt <- crossprod( hwt, resp.ind*pweightsM  )
        }
        thetabar <- hwt %*% theta
        sumbeta <- crossprod( Y,  thetabar*pweights )
        sumsig2 <- as.vector( crossprod( colSums( pweights * hwt ), theta2 ) )
    }

    #--- calculation of variance and regression coefficients
    beta <- YYinv %*% sumbeta     # updated beta
    sumsig2 <- matrix(sumsig2, nrow=ndim, ncol=ndim)
    if (G==1){
        variance <- (sumsig2- crossprod( sumbeta, beta ) )/nstud  #new variance
    }

    #--- fixed beta coefficients
    if ( ! is.null( beta.fixed )){
        beta[ beta.fixed[,1:2,drop=FALSE] ] <- beta.fixed[,3]
        beta <- as.matrix( beta, ncol=ndim )
    }

    #--- fixed covariance matrix entries
    if ( ! is.null(variance.fixed) ){
        variance[ variance.fixed[,1:2,drop=FALSE] ] <- variance.fixed[,3]
        variance[ variance.fixed[,c(2,1),drop=FALSE] ] <- variance.fixed[,3]
    }

    ###### Multiple Groups ##############
    if ( G > 1){    # begin multiple groups
        if ( snodes > 0 ){
                hwt <- hwt / snodes
                hwt <- hwt / rowSums( hwt )
        }
        for (gg in 1:G){
            ind.gg <- which( group==gg )
            thetabar <- hwt[ind.gg,] %*% theta
            sumbeta <- crossprod( Y[ind.gg,],  thetabar*pweights[ind.gg] )
            sumsig2 <- colSums((pweights[ind.gg]*hwt[ind.gg,]) %*% theta2)
            sumsig2 <- matrix(sumsig2,ndim,ndim)
            variance[ind.gg] <- (sumsig2- crossprod(sumbeta, beta) )/sum(pweights[ind.gg])
        }
    }        # end multiple groups
    #*************************************************

    #--- adjustments of variance estimation
    eps <- 1E-10
    if( ndim==1 ){  # prevent negative variance
        variance[ variance < min.variance ] <- min.variance
    }
    if (G==1){
        diag(variance) <- diag(variance) + eps
    }
    if ( ! est.variance ){
        if ( G==1 ){
                variance <- stats::cov2cor(variance)
        } # fix variance at 1
        if ( G > 1 ){
            variance[ group==1 ] <- 1
        }
        # fix variance of first group to 1
    }

    #--- function for constraining the variance
    if ( ! is.null( userfct.variance ) ){
        variance <- do.call( userfct.variance, list(variance) )
    }

    if ( ( iter < 4 ) ){
        na_variance <- sum(is.na(variance)) > 0
        if (na_variance){
            v1 <- paste0("Problems in variance estimation.\n ",
                    "Try to Choose argument control=list( xsi.start0=TRUE, ...) ")
            stop(v1)
        }
    }

    #--- variance acceleration
    if ( ! is.null(variance_acceleration) ){
        if ( variance_acceleration$acceleration !="none" ){
            variance_acceleration <- tam_accelerate_parameters( xsi_acceleration=variance_acceleration,
                        xsi=as.vector(variance), iter=iter, itermin=3)
            variance <- matrix( variance_acceleration$parm, nrow=nrow(variance), ncol=ncol(variance) )
        }
    }

    #---- parameter change
    beta_change <- max( abs( beta - beta_old ) )
    variance_change <- max( abs( as.vector( variance ) - as.vector( variance_old ) ) )
    #----- OUTPUT
    res <- list( beta=beta, variance=variance, itemwt=itemwt,
                variance_acceleration=variance_acceleration, beta_change=beta_change,
                variance_change=variance_change )
    return(res)
}
#-----------------------------------------------------

mstep.regression <- tam_mml_mstep_regression

Try the TAM package in your browser

Any scripts or data that you put into this service are public.

TAM documentation built on May 29, 2024, 2:20 a.m.