Huggins89.t1 | R Documentation |
Simulated capture data set for the linear logistic model depending on an occasion covariate and an individual covariate for 10 trapping occasions and 20 individuals.
data(Huggins89table1)
data(Huggins89.t1)
The format is a data frame.
Table 1 of Huggins (1989) gives this toy data set.
Note that variables t1
,...,t10
are
occasion-specific variables. They correspond to the
response variables y1
,...,y10
which
have values 1 for capture and 0 for not captured.
Both Huggins89table1
and Huggins89.t1
are identical.
The latter used variables beginning with z
,
not t
, and may be withdrawn very soon.
Huggins, R. M. (1989). On the statistical analysis of capture experiments. Biometrika, 76, 133–140.
## Not run:
Huggins89table1 <-
transform(Huggins89table1, x3.tij = t01,
T02 = t02, T03 = t03, T04 = t04, T05 = t05, T06 = t06,
T07 = t07, T08 = t08, T09 = t09, T10 = t10)
small.table1 <- subset(Huggins89table1,
y01 + y02 + y03 + y04 + y05 + y06 + y07 + y08 + y09 + y10 > 0)
# fit.tbh is the bottom equation on p.133.
# It is a M_tbh model.
fit.tbh <-
vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10) ~
x2 + x3.tij,
xij = list(x3.tij ~ t01 + t02 + t03 + t04 + t05 +
t06 + t07 + t08 + t09 + t10 +
T02 + T03 + T04 + T05 + T06 +
T07 + T08 + T09 + T10 - 1),
posbernoulli.tb(parallel.t = TRUE ~ x2 + x3.tij),
data = small.table1, trace = TRUE,
form2 = ~ x2 + x3.tij +
t01 + t02 + t03 + t04 + t05 + t06 +
t07 + t08 + t09 + t10 +
T02 + T03 + T04 + T05 + T06 +
T07 + T08 + T09 + T10)
# These results differ a bit from Huggins (1989), probably because
# two animals had to be removed here (they were never caught):
coef(fit.tbh) # First element is the behavioural effect
sqrt(diag(vcov(fit.tbh))) # SEs
constraints(fit.tbh, matrix = TRUE)
summary(fit.tbh, presid = FALSE)
fit.tbh@extra$N.hat # Estimate of the population site N; cf. 20.86
fit.tbh@extra$SE.N.hat # Its standard error; cf. 1.87 or 4.51
fit.th <-
vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10) ~ x2,
posbernoulli.t, data = small.table1, trace = TRUE)
coef(fit.th)
constraints(fit.th)
coef(fit.th, matrix = TRUE) # M_th model
summary(fit.th, presid = FALSE)
fit.th@extra$N.hat # Estimate of the population size N
fit.th@extra$SE.N.hat # Its standard error
fit.bh <-
vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10) ~ x2,
posbernoulli.b(I2 = FALSE), data = small.table1, trace = TRUE)
coef(fit.bh)
constraints(fit.bh)
coef(fit.bh, matrix = TRUE) # M_bh model
summary(fit.bh, presid = FALSE)
fit.bh@extra$N.hat
fit.bh@extra$SE.N.hat
fit.h <-
vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10) ~ x2,
posbernoulli.b, data = small.table1, trace = TRUE)
coef(fit.h, matrix = TRUE) # M_h model (version 1)
coef(fit.h)
summary(fit.h, presid = FALSE)
fit.h@extra$N.hat
fit.h@extra$SE.N.hat
Fit.h <-
vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10) ~ x2,
posbernoulli.t(parallel.t = TRUE ~ x2),
data = small.table1, trace = TRUE)
coef(Fit.h)
coef(Fit.h, matrix = TRUE) # M_h model (version 2)
summary(Fit.h, presid = FALSE)
Fit.h@extra$N.hat
Fit.h@extra$SE.N.hat
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.