cao.control | R Documentation |
Algorithmic constants and parameters for a constrained additive
ordination (CAO), by fitting a reduced-rank vector generalized
additive model (RR-VGAM), are set using this function.
This is the control function for cao
.
cao.control(Rank = 1, all.knots = FALSE, criterion = "deviance", Cinit = NULL,
Crow1positive = TRUE, epsilon = 1.0e-05, Etamat.colmax = 10,
GradientFunction = FALSE, iKvector = 0.1, iShape = 0.1,
noRRR = ~ 1, Norrr = NA,
SmallNo = 5.0e-13, Use.Init.Poisson.QO = TRUE,
Bestof = if (length(Cinit)) 1 else 10, maxitl = 10,
imethod = 1, bf.epsilon = 1.0e-7, bf.maxit = 10,
Maxit.optim = 250, optim.maxit = 20, sd.sitescores = 1.0,
sd.Cinit = 0.02, suppress.warnings = TRUE,
trace = TRUE, df1.nl = 2.5, df2.nl = 2.5,
spar1 = 0, spar2 = 0, ...)
Rank |
The numerical rank |
all.knots |
Logical indicating if all distinct points of the smoothing
variables are to be used as knots. Assigning the value
|
criterion |
Convergence criterion. Currently, only one is supported: the deviance is minimized. |
Cinit |
Optional initial C matrix which may speed up convergence. |
Crow1positive |
Logical vector of length |
epsilon |
Positive numeric. Used to test for convergence for GLMs fitted in FORTRAN. Larger values mean a loosening of the convergence criterion. |
Etamat.colmax |
Positive integer, no smaller than |
GradientFunction |
Logical. Whether |
iKvector , iShape |
See |
noRRR |
Formula giving terms that are not to be included
in the reduced-rank regression (or formation of the latent
variables). The default is to omit the intercept term from
the latent variables. Currently, only |
Norrr |
Defunct. Please use |
SmallNo |
Positive numeric between |
Use.Init.Poisson.QO |
Logical. If |
Bestof |
Integer. The best of |
maxitl |
Positive integer. Maximum number of Newton-Raphson/Fisher-scoring/local-scoring iterations allowed. |
imethod |
See |
bf.epsilon |
Positive numeric. Tolerance used by the modified vector backfitting algorithm for testing convergence. |
bf.maxit |
Positive integer. Number of backfitting iterations allowed in the compiled code. |
Maxit.optim |
Positive integer.
Number of iterations given to the function
|
optim.maxit |
Positive integer.
Number of times |
sd.sitescores |
Numeric. Standard deviation of the
initial values of the site scores, which are generated from
a normal distribution.
Used when |
sd.Cinit |
Standard deviation of the initial values for the elements
of C.
These are normally distributed with mean zero.
This argument is used only if |
suppress.warnings |
Logical. Suppress warnings? |
trace |
Logical indicating if output should be produced for each
iteration. Having the value |
df1.nl , df2.nl |
Numeric and non-negative, recycled to length S.
Nonlinear degrees
of freedom for smooths of the first and second latent variables.
A value of 0 means the smooth is linear. Roughly, a value between
1.0 and 2.0 often has the approximate flexibility of a quadratic.
The user should not assign too large a value to this argument, e.g.,
the value 4.0 is probably too high. The argument |
spar1 , spar2 |
Numeric and non-negative, recycled to length S.
Smoothing parameters of the
smooths of the first and second latent variables. The larger
the value, the more smooth (less wiggly) the fitted curves.
These arguments are an
alternative to specifying |
... |
Ignored at present. |
Many of these arguments are identical to
qrrvglm.control
. Here, R
is the
Rank
, M
is the number of additive predictors, and
S
is the number of responses (species). Thus M=S
for binomial and Poisson responses, and M=2S
for the
negative binomial and 2-parameter gamma distributions.
Allowing the smooths too much flexibility means the CAO
optimization problem becomes more difficult to solve. This
is because the number of local solutions increases as
the nonlinearity of the smooths increases. In situations
of high nonlinearity, many initial values should be used,
so that Bestof
should be assigned a larger value. In
general, there should be a reasonable value of df1.nl
somewhere between 0 and about 3 for most data sets.
A list with the components corresponding to its arguments, after some basic error checking.
The argument df1.nl
can be inputted in the format
c(spp1 = 2, spp2 = 3, 2.5)
, say, meaning the default
value is 2.5, but two species have alternative values.
If spar1 = 0
and df1.nl = 0
then this represents
fitting linear functions (CLO). Currently, this is handled in
the awkward manner of setting df1.nl
to be a small
positive value, so that the smooth is almost linear but
not quite. A proper fix to this special case should done
in the short future.
T. W. Yee
Yee, T. W. (2006). Constrained additive ordination. Ecology, 87, 203–213.
Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach, London: Chapman & Hall.
cao
.
## Not run:
hspider[,1:6] <- scale(hspider[,1:6]) # Standardized environmental vars
set.seed(123)
ap1 <- cao(cbind(Pardlugu, Pardmont, Pardnigr, Pardpull, Zoraspin) ~
WaterCon + BareSand + FallTwig +
CoveMoss + CoveHerb + ReflLux,
family = poissonff, data = hspider,
df1.nl = c(Zoraspin = 2.3, 2.1),
Bestof = 10, Crow1positive = FALSE)
sort(deviance(ap1, history = TRUE)) # A history of all the iterations
Coef(ap1)
par(mfrow = c(2, 3)) # All or most of the curves are unimodal; some are
plot(ap1, lcol = "blue") # quite symmetric. Hence a CQO model should be ok
par(mfrow = c(1, 1), las = 1)
index <- 1:ncol(depvar(ap1)) # lvplot is jagged because only 28 sites
lvplot(ap1, lcol = index, pcol = index, y = TRUE)
trplot(ap1, label = TRUE, col = index)
abline(a = 0, b = 1, lty = 2)
persp(ap1, label = TRUE, col = 1:4)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.