# exponential: Exponential Distribution In VGAM: Vector Generalized Linear and Additive Models

 exponential R Documentation

## Exponential Distribution

### Description

Maximum likelihood estimation for the exponential distribution.

### Usage

```exponential(link = "loglink", location = 0, expected = TRUE,
percentiles = 50,
ishrinkage = 0.95, parallel = FALSE, zero = NULL)
```

### Arguments

 `link` Parameter link function applied to the positive parameter rate. See `Links` for more choices. `location` Numeric of length 1, the known location parameter, A, say. `expected` Logical. If `TRUE` Fisher scoring is used, otherwise Newton-Raphson. The latter is usually faster. `ishrinkage, parallel, zero` See `CommonVGAMffArguments` for information. `type.fitted, percentiles` See `CommonVGAMffArguments` for information.

### Details

The family function assumes the response Y has density

f(y) = rate * exp(-rate * (y-A))

for y > A, where A is the known location parameter. By default, A=0. Then E(Y) = A + 1/rate and Var(Y) = 1/rate^2.

### Value

An object of class `"vglmff"` (see `vglmff-class`). The object is used by modelling functions such as `vglm`, and `vgam`.

### Note

Suppose A = 0. For a fixed time interval, the number of events is Poisson with mean rate if the time between events has a geometric distribution with mean 1/rate. The argument `rate` in `exponential` is the same as `rexp` etc. The argument `lambda` in `rpois` is somewhat the same as `rate` here.

T. W. Yee

### References

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011). Statistical Distributions, Hoboken, NJ, USA: John Wiley and Sons, Fourth edition.

`amlexponential`, `gpd`, `laplace`, `expgeometric`, `explogff`, `poissonff`, `mix2exp`, `freund61`, `simulate.vlm`, `Exponential`.

### Examples

```edata <- data.frame(x2 = runif(nn <- 100) - 0.5)
edata <- transform(edata, x3 = runif(nn) - 0.5)
edata <- transform(edata, eta = 0.2 - 0.7 * x2 + 1.9 * x3)
edata <- transform(edata, rate = exp(eta))
edata <- transform(edata, y = rexp(nn, rate = rate))
with(edata, stem(y))

fit.slow <- vglm(y ~ x2 + x3, exponential, data = edata, trace = TRUE)
fit.fast <- vglm(y ~ x2 + x3, exponential(exp = FALSE), data = edata,
trace = TRUE, crit = "coef")
coef(fit.slow, mat = TRUE)
summary(fit.slow)

# Compare results with a GPD. Has a threshold.
threshold <- 0.5
gdata <- data.frame(y1 = threshold + rexp(n = 3000, rate = exp(1.5)))

fit.exp <- vglm(y1 ~ 1, exponential(location = threshold), data = gdata)
coef(fit.exp, matrix = TRUE)
Coef(fit.exp)
logLik(fit.exp)

fit.gpd <- vglm(y1 ~ 1, gpd(threshold =  threshold), data = gdata)
coef(fit.gpd, matrix = TRUE)
Coef(fit.gpd)
logLik(fit.gpd)
```

VGAM documentation built on July 6, 2022, 5:05 p.m.