View source: R/family.actuary.R
fisk | R Documentation |
Maximum likelihood estimation of the 2-parameter Fisk distribution.
fisk(lscale = "loglink", lshape1.a = "loglink", iscale = NULL,
ishape1.a = NULL, imethod = 1, lss = TRUE,
gscale = exp(-5:5), gshape1.a = seq(0.75, 4, by = 0.25),
probs.y = c(0.25, 0.5, 0.75), zero = "shape")
lss |
See |
lshape1.a , lscale |
Parameter link functions applied to the
(positive) parameters |
iscale , ishape1.a , imethod , zero |
See |
gscale , gshape1.a |
See |
probs.y |
See |
The 2-parameter Fisk (aka log-logistic) distribution
is the 4-parameter
generalized beta II distribution with
shape parameter q=p=1
.
It is also the 3-parameter Singh-Maddala distribution
with shape parameter q=1
, as well as the
Dagum distribution with p=1
.
More details can be found in Kleiber and Kotz (2003).
The Fisk distribution has density
f(y) = a y^{a-1} / [b^a \{1 + (y/b)^a\}^2]
for a > 0
, b > 0
, y \geq 0
.
Here, b
is the scale parameter scale
,
and a
is a shape parameter.
The cumulative distribution function is
F(y) = 1 - [1 + (y/b)^a]^{-1} = [1 + (y/b)^{-a}]^{-1}.
The mean is
E(Y) = b \, \Gamma(1 + 1/a) \, \Gamma(1 - 1/a)
provided a > 1
; these are returned as the fitted values.
This family function handles multiple responses.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions
such as vglm
,
and vgam
.
See the notes in genbetaII
.
T. W. Yee
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
Fisk
,
genbetaII
,
betaII
,
dagum
,
sinmad
,
inv.lomax
,
lomax
,
paralogistic
,
inv.paralogistic
,
simulate.vlm
.
fdata <- data.frame(y = rfisk(200, shape = exp(1), exp(2)))
fit <- vglm(y ~ 1, fisk(lss = FALSE), data = fdata, trace = TRUE)
fit <- vglm(y ~ 1, fisk(ishape1.a = exp(2)), fdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.