View source: R/family.univariate.R
hypersecant | R Documentation |
Estimation of the parameter of the hyperbolic secant distribution.
hypersecant(link.theta = extlogitlink(min = -pi/2, max = pi/2),
init.theta = NULL)
hypersecant01(link.theta = extlogitlink(min = -pi/2, max = pi/2),
init.theta = NULL)
link.theta |
Parameter link function applied to the
parameter |
init.theta |
Optional initial value for |
The probability density function of the hyperbolic secant distribution is given by
f(y;\theta) =
\exp(\theta y + \log(\cos(\theta ))) / (2 \cosh(\pi y/2)),
for parameter -\pi/2 < \theta < \pi/2
and all real y
.
The mean of Y
is \tan(\theta)
(returned as the fitted values).
Morris (1982) calls this model NEF-HS
(Natural Exponential Family-Hyperbolic Secant).
It is used to generate NEFs, giving rise to the class of NEF-GHS
(G for Generalized).
Another parameterization is used for hypersecant01()
:
let Y = (logit U) / \pi
.
Then this uses
f(u;\theta)=(\cos(\theta)/\pi) \times
u^{-0.5+\theta/\pi} \times
(1-u)^{-0.5-\theta/\pi},
for
parameter -\pi/2 < \theta < \pi/2
and 0 < u < 1
.
Then the mean of U
is 0.5 + \theta/\pi
(returned as the fitted values) and the variance is
(\pi^2 - 4 \theta^2) / (8\pi^2)
.
For both parameterizations Newton-Raphson is same as Fisher scoring.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions
such as vglm
,
and vgam
.
T. W. Yee
Jorgensen, B. (1997). The Theory of Dispersion Models. London: Chapman & Hall.
Morris, C. N. (1982). Natural exponential families with quadratic variance functions. The Annals of Statistics, 10(1), 65–80.
gensh
,
extlogitlink
.
hdata <- data.frame(x2 = rnorm(nn <- 200))
hdata <- transform(hdata, y = rnorm(nn)) # Not very good data!
fit1 <- vglm(y ~ x2, hypersecant, hdata, trace = TRUE, crit = "c")
coef(fit1, matrix = TRUE)
fit1@misc$earg
# Not recommended:
fit2 <- vglm(y ~ x2, hypersecant(link = "identitylink"), hdata)
coef(fit2, matrix = TRUE)
fit2@misc$earg
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.