View source: R/family.aunivariate.R
hzeta | R Documentation |
Estimating the parameter of Haight's zeta distribution
hzeta(lshape = "logloglink", ishape = NULL, nsimEIM = 100)
lshape |
Parameter link function for the parameter,
called |
ishape , nsimEIM |
See |
The probability function is
f(y) = (2y-1)^{(-\alpha)} - (2y+1)^{(-\alpha)},
where the parameter \alpha>0
and y=1,2,\ldots
.
The function dhzeta
computes this probability function.
The mean of Y
, which is returned as fitted values, is
(1-2^{-\alpha}) \zeta(\alpha)
provided \alpha > 1
, where \zeta
is
Riemann's zeta function.
The mean is a decreasing function of \alpha
.
The mean is infinite if \alpha \leq 1
, and
the variance is infinite if \alpha \leq 2
.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
and vgam
.
T. W. Yee
Johnson N. L., Kemp, A. W. and Kotz S. (2005). Univariate Discrete Distributions, 3rd edition, pp.533–4. Hoboken, New Jersey: Wiley.
Hzeta
,
zeta
,
zetaff
,
loglog
,
simulate.vlm
.
shape <- exp(exp(-0.1)) # The parameter
hdata <- data.frame(y = rhzeta(n = 1000, shape))
fit <- vglm(y ~ 1, hzeta, data = hdata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit) # Useful for intercept-only models; should be same as shape
c(with(hdata, mean(y)), head(fitted(fit), 1))
summary(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.