View source: R/family.actuary.R
inv.lomax | R Documentation |
Maximum likelihood estimation of the 2-parameter inverse Lomax distribution.
inv.lomax(lscale = "loglink", lshape2.p = "loglink", iscale = NULL,
ishape2.p = NULL, imethod = 1, gscale = exp(-5:5),
gshape2.p = exp(-5:5), probs.y = c(0.25, 0.5, 0.75),
zero = "shape2.p")
lscale , lshape2.p |
Parameter link functions applied to the
(positive) parameters |
iscale , ishape2.p , imethod , zero |
See |
gscale , gshape2.p |
See |
probs.y |
See |
The 2-parameter inverse Lomax distribution is the 4-parameter
generalized beta II distribution with shape parameters
a=q=1
.
It is also the 3-parameter Dagum distribution
with shape parameter a=1
, as well as the
beta distribution of the second kind with q=1
.
More details can be found in Kleiber and Kotz (2003).
The inverse Lomax distribution has density
f(y) = p y^{p-1} / [b^p \{1 + y/b\}^{p+1}]
for b > 0
, p > 0
, y \geq 0
.
Here, b
is the scale parameter scale
,
and p
is a shape parameter.
The mean does not seem to exist; the median is returned
as the fitted values.
This family function handles multiple responses.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions
such as vglm
,
and vgam
.
See the notes in genbetaII
.
T. W. Yee
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
inv.lomax
,
genbetaII
,
betaII
,
dagum
,
sinmad
,
fisk
,
lomax
,
paralogistic
,
inv.paralogistic
,
simulate.vlm
.
idata <- data.frame(y = rinv.lomax(2000, sc = exp(2), exp(1)))
fit <- vglm(y ~ 1, inv.lomax, data = idata, trace = TRUE)
fit <- vglm(y ~ 1, inv.lomax(iscale = exp(3)), data = idata,
trace = TRUE, epsilon = 1e-8, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.