View source: R/family.normal.R
lognormal | R Documentation |
Maximum likelihood estimation of the (univariate) lognormal distribution.
lognormal(lmeanlog = "identitylink", lsdlog = "loglink", zero = "sdlog")
lmeanlog , lsdlog |
Parameter link functions applied to the mean and (positive)
|
zero |
Specifies which
linear/additive predictor is modelled as intercept-only.
For |
A random variable Y
has a 2-parameter lognormal distribution
if \log(Y)
is distributed N(\mu, \sigma^2)
.
The expected value of Y
, which is
E(Y) = \exp(\mu + 0.5 \sigma^2)
and not \mu
, make up the fitted values.
The variance of Y
is
Var(Y) = [\exp(\sigma^2) -1] \exp(2\mu + \sigma^2).
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
T. W. Yee
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
Lognormal
,
uninormal
,
CommonVGAMffArguments
,
simulate.vlm
.
ldata2 <- data.frame(x2 = runif(nn <- 1000))
ldata2 <- transform(ldata2, y1 = rlnorm(nn, 1 + 2 * x2, sd = exp(-1)),
y2 = rlnorm(nn, 1, sd = exp(-1 + x2)))
fit1 <- vglm(y1 ~ x2, lognormal(zero = 2), data = ldata2, trace = TRUE)
fit2 <- vglm(y2 ~ x2, lognormal(zero = 1), data = ldata2, trace = TRUE)
coef(fit1, matrix = TRUE)
coef(fit2, matrix = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.