View source: R/family.actuary.R
paralogistic | R Documentation |
Maximum likelihood estimation of the 2-parameter paralogistic distribution.
paralogistic(lscale = "loglink", lshape1.a = "loglink", iscale = NULL,
ishape1.a = NULL, imethod = 1, lss = TRUE, gscale = exp(-5:5),
gshape1.a = seq(0.75, 4, by = 0.25), probs.y = c(0.25, 0.5, 0.75),
zero = "shape")
lss |
See |
lshape1.a , lscale |
Parameter link functions applied to the
(positive) parameters |
iscale , ishape1.a , imethod , zero |
See |
gscale , gshape1.a |
See |
probs.y |
See |
The 2-parameter paralogistic distribution is the 4-parameter
generalized beta II distribution with shape parameter p=1
and
a=q
.
It is the 3-parameter Singh-Maddala distribution with a=q
.
More details can be found in Kleiber and Kotz (2003).
The 2-parameter paralogistic has density
f(y) = a^2 y^{a-1} / [b^a \{1 + (y/b)^a\}^{1+a}]
for a > 0
, b > 0
, y \geq 0
.
Here, b
is the scale parameter scale
,
and a
is the shape parameter.
The mean is
E(Y) = b \, \Gamma(1 + 1/a) \, \Gamma(a - 1/a) / \Gamma(a)
provided a > 1
; these are returned as the fitted values.
This family function handles multiple responses.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
See the notes in genbetaII
.
T. W. Yee
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
Paralogistic
,
sinmad
,
genbetaII
,
betaII
,
dagum
,
fisk
,
inv.lomax
,
lomax
,
inv.paralogistic
.
## Not run:
pdata <- data.frame(y = rparalogistic(n = 3000, exp(1), scale = exp(1)))
fit <- vglm(y ~ 1, paralogistic(lss = FALSE), data = pdata, trace = TRUE)
fit <- vglm(y ~ 1, paralogistic(ishape1.a = 2.3, iscale = 5),
data = pdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.