simulate.vlm | R Documentation |
Simulate one or more responses from the distribution corresponding to a fitted model object.
## S3 method for class 'vlm'
simulate(object, nsim = 1, seed = NULL, ...)
object |
an object representing a fitted model.
Usually an object of class
|
nsim , seed |
Same as |
... |
additional optional arguments. |
This is a methods function for simulate
and hopefully should behave in a very similar manner.
Only VGAM family functions with a simslot
slot
have been implemented for simulate
.
Similar to simulate
.
Note that many VGAM family functions can handle multiple responses.
This can result in a longer data frame with more rows
(nsim
multiplied by n
rather than the
ordinary n
).
In the future an argument may be available so that there
is always n
rows no matter how many responses were
inputted.
With multiple response and/or multivariate responses,
the order of the elements may differ.
For some VGAM families, the order is
n \times N \times F
,
where n
is the sample size,
N
is nsim
and
F
is ncol(fitted(vglmObject))
.
For other VGAM families, the order is
n \times F \times N
.
An example of each is given below.
Currently the VGAM family functions with a
simslot
slot are:
alaplace1
,
alaplace2
,
betabinomial
,
betabinomialff
,
betaR
,
betaff
,
biamhcop
,
bifrankcop
,
bilogistic
,
binomialff
,
binormal
,
binormalcop
,
biclaytoncop
,
cauchy
,
cauchy1
,
chisq
,
dirichlet
,
dagum
,
erlang
,
exponential
,
bifgmcop
,
fisk
,
gamma1
,
gamma2
,
gammaR
,
gengamma.stacy
,
geometric
,
gompertz
,
gumbelII
,
hzeta
,
inv.lomax
,
inv.paralogistic
,
kumar
,
lgamma1
,
lgamma3
,
lindley
,
lino
,
logff
,
logistic1
,
logistic
,
lognormal
,
lomax
,
makeham
,
negbinomial
,
negbinomial.size
,
paralogistic
,
perks
,
poissonff
,
posnegbinomial
,
posnormal
,
pospoisson
,
polya
,
polyaR
,
posbinomial
,
rayleigh
,
riceff
,
simplex
,
sinmad
,
slash
,
studentt
,
studentt2
,
studentt3
,
triangle
,
uninormal
,
yulesimon
,
zageometric
,
zageometricff
,
zanegbinomial
,
zanegbinomialff
,
zapoisson
,
zapoissonff
,
zigeometric
,
zigeometricff
,
zinegbinomial
,
zipf
,
zipoisson
,
zipoissonff
.
Also, categorical family functions:
acat
,
cratio
,
sratio
,
cumulative
,
multinomial
.
See also
RNG
about random number generation in R,
vglm
, vgam
for model fitting.
nn <- 10; mysize <- 20; set.seed(123)
bdata <- data.frame(x2 = rnorm(nn))
bdata <- transform(bdata,
y1 = rbinom(nn, size = mysize, p = logitlink(1+x2, inverse = TRUE)),
y2 = rbinom(nn, size = mysize, p = logitlink(1+x2, inverse = TRUE)),
f1 = factor(as.numeric(rbinom(nn, size = 1,
p = logitlink(1+x2, inverse = TRUE)))))
(fit1 <- vglm(cbind(y1, aaa = mysize - y1) ~ x2, # Matrix response (2-colns)
binomialff, data = bdata))
(fit2 <- vglm(f1 ~ x2, binomialff, model = TRUE, data = bdata)) # Factor response
set.seed(123); simulate(fit1, nsim = 8)
set.seed(123); c(simulate(fit2, nsim = 3)) # Use c() when model = TRUE
# An n x N x F example
set.seed(123); n <- 100
bdata <- data.frame(x2 = runif(n), x3 = runif(n))
bdata <- transform(bdata, y1 = rnorm(n, 1 + 2 * x2),
y2 = rnorm(n, 3 + 4 * x2))
fit1 <- vglm(cbind(y1, y2) ~ x2, binormal(eq.sd = TRUE), data = bdata)
nsim <- 1000 # Number of simulations for each observation
my.sims <- simulate(fit1, nsim = nsim)
dim(my.sims) # A data frame
aaa <- array(unlist(my.sims), c(n, nsim, ncol(fitted(fit1)))) # n by N by F
summary(rowMeans(aaa[, , 1]) - fitted(fit1)[, 1]) # Should be all 0s
summary(rowMeans(aaa[, , 2]) - fitted(fit1)[, 2]) # Should be all 0s
# An n x F x N example
n <- 100; set.seed(111); nsim <- 1000
zdata <- data.frame(x2 = runif(n))
zdata <- transform(zdata, lambda1 = loglink(-0.5 + 2 * x2, inverse = TRUE),
lambda2 = loglink( 0.5 + 2 * x2, inverse = TRUE),
pstr01 = logitlink( 0, inverse = TRUE),
pstr02 = logitlink(-1.0, inverse = TRUE))
zdata <- transform(zdata, y1 = rzipois(n, lambda = lambda1, pstr0 = pstr01),
y2 = rzipois(n, lambda = lambda2, pstr0 = pstr02))
zip.fit <- vglm(cbind(y1, y2) ~ x2, zipoissonff, data = zdata, crit = "coef")
my.sims <- simulate(zip.fit, nsim = nsim)
dim(my.sims) # A data frame
aaa <- array(unlist(my.sims), c(n, ncol(fitted(zip.fit)), nsim)) # n by F by N
summary(rowMeans(aaa[, 1, ]) - fitted(zip.fit)[, 1]) # Should be all 0s
summary(rowMeans(aaa[, 2, ]) - fitted(zip.fit)[, 2]) # Should be all 0s
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.