Sinmad | R Documentation |
Density, distribution function, quantile function and
random generation for the Singh-Maddala distribution with
shape parameters a
and q
, and scale parameter
scale
.
dsinmad(x, scale = 1, shape1.a, shape3.q, log = FALSE)
psinmad(q, scale = 1, shape1.a, shape3.q, lower.tail = TRUE, log.p = FALSE)
qsinmad(p, scale = 1, shape1.a, shape3.q, lower.tail = TRUE, log.p = FALSE)
rsinmad(n, scale = 1, shape1.a, shape3.q)
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape1.a , shape3.q |
shape parameters. |
scale |
scale parameter. |
log |
Logical.
If |
lower.tail , log.p |
Same meaning as in |
See sinmad
, which is the VGAM family function
for estimating the parameters by maximum likelihood estimation.
dsinmad
gives the density,
psinmad
gives the distribution function,
qsinmad
gives the quantile function, and
rsinmad
generates random deviates.
The Singh-Maddala distribution is a special case of the 4-parameter generalized beta II distribution.
T. W. Yee and Kai Huang
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
sinmad
,
genbetaII
.
sdata <- data.frame(y = rsinmad(n = 3000, scale = exp(2),
shape1 = exp(1), shape3 = exp(1)))
fit <- vglm(y ~ 1, sinmad(lss = FALSE, ishape1.a = 2.1), data = sdata,
trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.