sm.os | R Documentation |
This function represents an O-spline smooth term
in a vgam
formula
and confers automatic smoothing parameter selection.
sm.os(x, ..., niknots = 6, spar = -1, o.order = 2,
alg.niknots = c("s", ".nknots.smspl")[1], all.knots = FALSE,
ridge.adj = 1e-5, spillover = 0.01, maxspar = 1e12,
outer.ok = FALSE, fixspar = FALSE)
x |
covariate (abscissae) to be smoothed.
Also called the regressor.
If the |
... |
Used to accommodate the other |
niknots |
numeric,
the number of interior knots,
called |
alg.niknots |
character.
The algorithm used to determine the number of interior knots.
Only used when |
all.knots |
logical.
If |
spar , maxspar |
|
o.order |
The order of the O'Sullivan penalzed spline.
Any one value from |
ridge.adj |
small positive number to stabilize linear dependencies among B-spline bases. |
spillover |
small and positive proportion of the range used on
the outside of the boundary values.
This defines the endpoints |
outer.ok |
Fed into the argument (by the same name)
of |
fixspar |
logical.
If |
This function is currently used by vgam
to
allow automatic smoothing parameter selection based on
O-splines to minimize an UBRE quantity.
In contrast, s
operates by having a
prespecified amount of smoothing, e.g., its df
argument.
When the sample size is reasonably large
this function
is recommended over s
also because backfitting
is not required.
This function therefore allows 2nd-generation VGAMs to be
fitted (called G2-VGAMs, or Penalized-VGAMs).
This function should only be used with vgam
.
This function uses quantile
to
choose the knots, whereas sm.ps
chooses equally-spaced knots.
As Wand and Ormerod (2008) write,
in most situations the differences will be minor,
but it is possible for problems to arise
for either strategy by
constructing certain regression functions and
predictor variable distributions.
Any differences between O-splines and P-splines tend
to be at the boundaries. O-splines have
natural boundary constraints so that the solution is
linear beyond the boundary knots.
Some arguments in decreasing order of precedence are:
all.knots
,
niknots
,
alg.niknots
.
Unlike s
, which is symbolic and does not perform
any smoothing itself, this function does compute the penalized spline
when used by vgam
—it creates the appropriate columns
of the model matrix. When this function is used within
vgam
, automatic smoothing parameter selection is
implemented by calling magic
after the necessary
link-ups are done.
By default this function centres the component function. This function is also smart; it can be used for smart prediction (Section 18.6 of Yee (2015)). Automatic smoothing parameter selection is performed using performance-oriented iteration whereby an optimization problem is solved at each IRLS iteration.
This function works better when the sample size is large, e.g., when in the hundreds, say.
A matrix with attributes that are (only) used by vgam
.
The number of rows of the matrix is length(x)
.
The number of columns is a function of the number
of interior knots K
and
the order of the O-spline m
:
K+2m-1
.
In code, this is
niknots + 2 * o.order - 1
,
or using sm.ps
-like arguments,
ps.int + degree - 1
(where ps.int
should be more generally
interpreted as the number of intervals. The formula is
the same as sm.ps
.).
It transpires then that sm.os
and sm.ps
are very similar.
Being introduced into VGAM for the first time, this function (and those associated with it) should be used cautiously. Not all options are fully working or have been tested yet, and there are bound to be some bugs lurking around.
This function is currently under development and may change in the future.
One might try using this function with vglm
so as to fit a regression spline,
however, the default value of niknots
will probably
be too high for most data sets.
T. W. Yee, with some of the essential R code coming from the appendix of Wand and Ormerod (2008).
Wand, M. P. and Ormerod, J. T. (2008). On semiparametric regression with O'Sullivan penalized splines. Australian and New Zealand Journal of Statistics, 50(2): 179–198.
vgam
,
sm.ps
,
s
,
smartpred
,
is.smart
,
summarypvgam
,
smooth.spline
,
splineDesign
,
bs
,
magic
.
sm.os(runif(20))
## Not run:
data("TravelMode", package = "AER") # Need to install "AER" first
air.df <- subset(TravelMode, mode == "air") # Form 4 smaller data frames
bus.df <- subset(TravelMode, mode == "bus")
trn.df <- subset(TravelMode, mode == "train")
car.df <- subset(TravelMode, mode == "car")
TravelMode2 <- data.frame(income = air.df$income,
wait.air = air.df$wait - car.df$wait,
wait.trn = trn.df$wait - car.df$wait,
wait.bus = bus.df$wait - car.df$wait,
gcost.air = air.df$gcost - car.df$gcost,
gcost.trn = trn.df$gcost - car.df$gcost,
gcost.bus = bus.df$gcost - car.df$gcost,
wait = air.df$wait) # Value is unimportant
TravelMode2$mode <- subset(TravelMode, choice == "yes")$mode # The response
TravelMode2 <- transform(TravelMode2, incom.air = income, incom.trn = 0,
incom.bus = 0)
set.seed(1)
TravelMode2 <- transform(TravelMode2,
junkx2 = runif(nrow(TravelMode2)))
tfit2 <-
vgam(mode ~ sm.os(gcost.air, gcost.trn, gcost.bus) + ns(junkx2, 4) +
sm.os(incom.air, incom.trn, incom.bus) + wait ,
crit = "coef",
multinomial(parallel = FALSE ~ 1), data = TravelMode2,
xij = list(sm.os(gcost.air, gcost.trn, gcost.bus) ~
sm.os(gcost.air, gcost.trn, gcost.bus) +
sm.os(gcost.trn, gcost.bus, gcost.air) +
sm.os(gcost.bus, gcost.air, gcost.trn),
sm.os(incom.air, incom.trn, incom.bus) ~
sm.os(incom.air, incom.trn, incom.bus) +
sm.os(incom.trn, incom.bus, incom.air) +
sm.os(incom.bus, incom.air, incom.trn),
wait ~ wait.air + wait.trn + wait.bus),
form2 = ~ sm.os(gcost.air, gcost.trn, gcost.bus) +
sm.os(gcost.trn, gcost.bus, gcost.air) +
sm.os(gcost.bus, gcost.air, gcost.trn) +
wait +
sm.os(incom.air, incom.trn, incom.bus) +
sm.os(incom.trn, incom.bus, incom.air) +
sm.os(incom.bus, incom.air, incom.trn) +
junkx2 + ns(junkx2, 4) +
incom.air + incom.trn + incom.bus +
gcost.air + gcost.trn + gcost.bus +
wait.air + wait.trn + wait.bus)
par(mfrow = c(2, 2))
plot(tfit2, se = TRUE, lcol = "orange", scol = "blue", ylim = c(-4, 4))
summary(tfit2)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.