vgam-class | R Documentation |
Vector generalized additive models.
Objects can be created by calls of the form vgam(...)
.
nl.chisq
:Object of class "numeric"
.
Nonlinear chi-squared values.
nl.df
:Object of class "numeric"
.
Nonlinear chi-squared degrees of freedom values.
spar
:Object of class "numeric"
containing the (scaled) smoothing parameters.
s.xargument
:Object of
class "character"
holding the variable name of any s()
terms.
var
:Object of class "matrix"
holding
approximate pointwise standard error information.
Bspline
:Object of class "list"
holding the scaled (internal and boundary) knots, and the
fitted B-spline coefficients. These are used
for prediction.
extra
:Object of class "list"
;
the extra
argument on entry to vglm
. This
contains any extra information that might be needed
by the family function.
family
:Object of class "vglmff"
.
The family function.
iter
:Object of class "numeric"
.
The number of IRLS iterations used.
predictors
:Object of class "matrix"
with M
columns which holds
the M
linear predictors.
assign
:Object of class "list"
,
from class "vlm"
.
This named list gives information matching
the columns and the
(LM) model matrix terms.
call
:Object of class "call"
,
from class
"vlm"
.
The matched call.
coefficients
:Object of class
"numeric"
, from class "vlm"
.
A named vector of coefficients.
constraints
:Object of
class "list"
, from
class "vlm"
.
A named list of constraint matrices used in the fitting.
contrasts
:Object of
class "list"
, from
class "vlm"
.
The contrasts used (if any).
control
:Object of class "list"
,
from class
"vlm"
.
A list of parameters for controlling the fitting process.
See vglm.control
for details.
criterion
:Object of
class "list"
, from
class "vlm"
.
List of convergence criterion evaluated at the
final IRLS iteration.
df.residual
:Object of class
"numeric"
, from class "vlm"
.
The residual degrees of freedom.
df.total
:Object of class "numeric"
,
from class "vlm"
.
The total degrees of freedom.
dispersion
:Object of class "numeric"
,
from class "vlm"
.
The scaling parameter.
effects
:Object of class "numeric"
,
from class "vlm"
.
The effects.
fitted.values
:Object of class
"matrix"
, from class "vlm"
.
The fitted values. This is usually the mean but may be
quantiles, or the location parameter,
e.g., in the Cauchy model.
misc
:Object of class "list"
,
from class "vlm"
.
A named list to hold miscellaneous parameters.
model
:Object of class "data.frame"
,
from class "vlm"
.
The model frame.
na.action
:Object of class "list"
,
from class "vlm"
.
A list holding information about missing values.
offset
:Object of class "matrix"
,
from class "vlm"
.
If non-zero, a M
-column matrix of offsets.
post
:Object of class "list"
,
from class "vlm"
where post-analysis results may be put.
preplot
:Object of class "list"
,
from class "vlm"
used by plotvgam
; the plotting parameters
may be put here.
prior.weights
:Object of class
"matrix"
, from class "vlm"
holding the initially supplied weights.
qr
:Object of class "list"
,
from class "vlm"
.
QR decomposition at the final iteration.
R
:Object of class "matrix"
,
from class "vlm"
.
The R matrix in the QR decomposition used
in the fitting.
rank
:Object of class "integer"
,
from class "vlm"
.
Numerical rank of the fitted model.
residuals
:Object of class "matrix"
,
from class "vlm"
.
The working residuals at the final IRLS iteration.
ResSS
:Object of class "numeric"
,
from class "vlm"
.
Residual sum of squares at the final IRLS iteration with
the adjusted dependent vectors and weight matrices.
smart.prediction
:Object of class
"list"
, from class "vlm"
.
A list of data-dependent parameters (if any)
that are used by smart prediction.
terms
:Object of class "list"
,
from class "vlm"
.
The terms
object used.
weights
:Object of class "matrix"
,
from class "vlm"
.
The weight matrices at the final IRLS iteration.
This is in matrix-band form.
x
:Object of class "matrix"
,
from class "vlm"
.
The model matrix (LM, not VGLM).
xlevels
:Object of class "list"
,
from class "vlm"
.
The levels of the factors, if any, used in fitting.
y
:Object of class "matrix"
,
from class "vlm"
.
The response, in matrix form.
Xm2
:Object of class "matrix"
,
from class "vlm"
.
See vglm-class
).
Ym2
:Object of class "matrix"
,
from class "vlm"
.
See vglm-class
).
callXm2
:Object of class "call"
, from class "vlm"
.
The matched call for argument form2
.
Class "vglm"
, directly.
Class "vlm"
, by class "vglm"
.
signature(object = "vglm")
:
cumulative distribution function.
Useful for quantile regression and extreme value data models.
signature(object = "vglm")
:
density plot.
Useful for quantile regression models.
signature(object = "vglm")
:
deviance of the model (where applicable).
signature(x = "vglm")
:
diagnostic plots.
signature(object = "vglm")
:
extract the additive predictors or
predict the additive predictors at a new data frame.
signature(x = "vglm")
:
short summary of the object.
signature(object = "vglm")
:
quantile plot (only applicable to some models).
signature(object = "vglm")
:
residuals. There are various types of these.
signature(object = "vglm")
:
residuals. Shorthand for resid
.
signature(object = "vglm")
:
return level plot.
Useful for extreme value data models.
signature(object = "vglm")
:
a more detailed summary of the object.
VGAMs have all the slots that vglm
objects
have (vglm-class
), plus the first few slots
described in the section above.
Thomas W. Yee
Yee, T. W. and Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal Statistical Society, Series B, Methodological, 58, 481–493.
vgam.control
,
vglm
,
s
,
vglm-class
,
vglmff-class
.
# Fit a nonparametric proportional odds model
pneumo <- transform(pneumo, let = log(exposure.time))
vgam(cbind(normal, mild, severe) ~ s(let),
cumulative(parallel = TRUE), data = pneumo)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.