R/rcomphierarc.summaries.R

Defines functions weights.portfolio severity.portfolio frequency.portfolio aggregate.portfolio

Documented in aggregate.portfolio frequency.portfolio severity.portfolio weights.portfolio

### actuar: Actuarial Functions and Heavy Tailed Distributions
###
### Computing summary statistics and accessing components of a
### portfolio.
###
### AUTHORS: Louis-Philippe Pouliot, Tommy Ouellet,
### Vincent Goulet <vincent.goulet@act.ulaval.ca>

aggregate.portfolio <- function(x, by = names(x$nodes), FUN = sum,
                                classification = TRUE, prefix = NULL, ...)
{
    level.names <- names(x$nodes)       # level names
    nlevels <- length(level.names)      # number of levels
    years <- level.names[nlevels]       # name of last level

    ## Match level names in 'by' to those in the model
    by <- match.arg(by, level.names, several.ok = TRUE)

    ## Version of FUN able to work on lists
    fun <- function(x, ...) FUN(unlist(x), ...)

    ## The most common case should be to aggregate claim amounts by
    ## node. This case being very simple, it is treated separately.
    if (identical(by, level.names))
        return(cbind(if (classification) x$classification,
                     array(sapply(x$data, FUN, ...), dim(x$data),
                           dimnames = list(NULL, paste(prefix, colnames(x$data), sep = "")))))

    ## Summaries only by last level (years) are also simple to handle.
    if (identical(by, years))
    {
        res <- apply(x$data, 2, fun, ...)
        names(res) <- paste(prefix, colnames(x$data), sep = "")
        return(res)
    }

    ## The other possibilities require to split the data in groups as
    ## specified in argument 'by'. If the last level (years) is in
    ## 'by', then the matrix structure must be retained to make the
    ## summaries. Otherwise, it can just be dropped since summaries
    ## will span the years of observation.
    ##
    ## Convert the sequence of subscripts into factors by pasting the
    ## digits together. It is important *not* to sort the levels in
    ## case the levels in 'by' are not in the same order as in
    ## 'level.names'.
    rows <- setdiff(by, years)          # groups other than years
    s <- x$classification[, rows, drop = FALSE] # subscripts
    f <- apply(s, 1, paste, collapse = "")      # grouping IDs
    f <- factor(f, levels = unique(f))          # factors
    s <- s[match(levels(f), f), , drop = FALSE] # unique subscripts
    xx <- split(x$data, f)                      # split data

    ## Make summaries
    if (years %in% by)
    {
        xx <- lapply(xx, matrix, ncol = ncol(x$data))
        res <- t(sapply(xx, function(x, ...) apply(x, 2, fun, ...), ...))
        cols <- colnames(x$data)
    }
    else
    {
        res <- sapply(xx, fun, ...)
        cols <- deparse(substitute(FUN))
    }

    ## Return results as a matrix
    structure(cbind(if (classification) s, res),
              dimnames = list(NULL, c(if (classification) rows, paste(prefix, cols, sep = ""))))
}

frequency.portfolio <- function(x, by = names(x$nodes),
                                classification = TRUE, prefix = NULL, ...)
{
    chkDots(...)                        # method does not use '...'
    freq <- function(x) if (identical(x, NA)) NA else length(x[!is.na(x)])
    aggregate(x, by, freq, classification, prefix)
}

severity.portfolio <- function(x, by = head(names(x$node), -1),
                               splitcol = NULL, classification = TRUE,
                               prefix = NULL, ...)
{
    chkDots(...)                        # method does not use '...'

    level.names <- names(x$nodes)       # level names
    ci <- seq_len(ncol(x$data))         # column indexes

    ## Match level names in 'by' to those in the model
    by <- match.arg(by, level.names, several.ok = TRUE)

    ## Sanity checks
    if (identical(by, level.names))
    {
        warning("nothing to do")
        return(x)
    }

    ## Convert character 'splitcol' to numeric and then from numeric
    ## or NULL to boolean.
    if (is.character(splitcol))
        splitcol <- pmatch(splitcol, colnames(x$data), duplicates.ok = TRUE)
    if (is.numeric(splitcol) || is.null(splitcol))
        splitcol <- ci %in% splitcol

    ## Unroll claim amounts by column; simplest case
    if (tail(level.names, 1L) %in% by)
    {
        if (length(by) > 1L)
            stop(sprintf("invalid %s specification", sQuote("by")))
        #x <- x$data
        res <- unroll(x$data, bycol = TRUE, drop = FALSE)
        colnames(res) <- paste(prefix, colnames(res), sep = "")
        return(list(main = res[, !splitcol],
                    split = if (all(!splitcol)) NULL else res[, splitcol]))
    }

    ## Unrolling per row (or group of rows) is more work. It requires
    ## to split the columns of the matrix first, and then to apply the
    ## unrolling procedure twice (if 'splitcol' != NULL).
    ##
    ## Utility function
    fun <- function(x) unlist(x[!is.na(x)])

    ## Split rows according to the 'by' argument.
    s <- x$classification[, by, drop = FALSE]   # subscripts
    f <- apply(s, 1, paste, collapse = "")      # grouping IDs
    f <- factor(f, levels = unique(f))          # factors
    s <- s[match(levels(f), f), , drop = FALSE] # unique subscripts

    ## Keep the 'splitcol' columns for later use.
    x.split <- x$data[, splitcol]

    ## If a prefix is not specified, use "claim." as a sensible
    ## choice.
    if (is.null(prefix))
        prefix <- "claim."

    ## Unroll the "main" block of columns.
    if (all(splitcol))
        res.main <- NULL
    else
    {
        x <- cbind(lapply(split(x$data[, !splitcol], f), fun))
        res.main <- unroll(x, bycol = FALSE, drop = FALSE)
        res.main <-
            if (0L < (nc <- ncol(res.main)))
            {
                dimnames(res.main) <-
                    list(NULL, paste(prefix, seq_len(nc), sep = ""))
                cbind(if (classification) s, res.main)
            }
            else
                NULL
    }

    ## Unroll the 'splitcol' block of columns.
    if (all(!splitcol))
        res.split <- NULL
    else
    {
        x <- cbind(lapply(split(x.split, f), fun))     # split data
        res.split <- unroll(x, bycol = FALSE, drop = FALSE)
        res.split <-
            if (0L < (nc <- ncol(res.split)))
            {
                dimnames(res.split) <-
                    list(NULL, paste(prefix, seq_len(nc), sep = ""))
                cbind(if (classification) s, res.split)
            }
            else
                NULL
    }

    ## Return the result as a list.
    list(main = res.main, split = res.split)
}

weights.portfolio <- function(object, classification = TRUE, prefix = NULL, ...)
{
    chkDots(...)                        # method does not use '...'

    if (is.null(object$weights))
        NULL
    else
    {
        w <- object$weights
        colnames(w) <- paste(prefix, colnames(w), sep = "")
        cbind(if (classification) object$classification, w)
    }
}

Try the actuar package in your browser

Any scripts or data that you put into this service are public.

actuar documentation built on Nov. 8, 2023, 9:06 a.m.