R/lattice.R

Defines functions lattice.cv.bwplot lattice.gaussian.backend lattice.discrete.backend

# lattice backend for plots aimed at gaussian bayesian networks.
lattice.discrete.backend = function(fitted, type, xlab, ylab, main, ...) {

  # check whether lattice is loaded, and try to load if it is not.
  check.and.load.package("lattice")

  if (type == "bar") {

    if (length(fitted$parents) == 0) {

      p = lattice::barchart(fitted$prob, xlab = xlab, ylab = ylab, main = main,
            panel = function(x, y, ...) {
              lattice::panel.grid(h = 0, v = -1)
              lattice::panel.barchart(x, y, ...)
            })

    }#THEN
    else {

      p = lattice::barchart(fitted$prob, groups = FALSE, as.table = TRUE,
            xlab = xlab, ylab = ylab, main = main,
            panel = function(x, y, ...) {
              lattice::panel.grid(h = 0, v = -1)
              lattice::panel.barchart(x, y, ...)
            })

    }#ELSE

  }#THEN
  else if (type == "dot") {

    if (length(fitted$parents) == 0) {

      p = lattice::dotplot(fitted$prob, xlab = xlab, ylab = ylab, main = main,
            type = c("p", "h"),
            panel = function(x, y, ...) {
              lattice::panel.grid(h = 0, v = -1)
              lattice::panel.dotplot(x, y, ...)
            })

    }#THEN
    else {

      p = lattice::dotplot(fitted$prob, groups = FALSE, as.table = TRUE,
            type = c("p", "h"), xlab = xlab, ylab = ylab, main = main,
            panel = function(x, y, ...) {
              lattice::panel.grid(h = 0, v = -1)
              lattice::panel.dotplot(x, y, ...)
            })

    }#ELSE

  }#THEN

  # print the plot explicitly, do not rely on auto-printing.
  print(p)

}#LATTICE.DISCRETE.BACKEND

# lattice backend for plots aimed at gaussian bayesian networks.
lattice.gaussian.backend = function(fitted, type, xlab, ylab, main, ...) {

  # check whether lattice is loaded, and try to load if it is not.
  check.and.load.package("lattice")

  are.present = function(x, element) {

    (element %in% names(x)) && !all(is.na(x[[element]]))

  }

  if (is(fitted, "bn.fit")) {

    # plot a panel for each node in the bayesian network.
    if (!is(fitted, "bn.fit.gnet"))
      stop("this plot is limited to Gaussian bayesian networks.")
    # check whether the residuals are present.
    if (any(!sapply(fitted, are.present, "residuals")))
      stop("no residuals present in the bn.fit object.")

    nodes = names(fitted)
    nrows = length(fitted[[1]]$residuals)

    if (type == "fitted") {

      temp = data.frame(
        resid = unlist(lapply(fitted, "[[", "residuals" )),
        fitted = unlist(lapply(fitted, "[[", "fitted.values" )),
        node = unlist(lapply(nodes, rep, times = nrows))
      )

    }#THEN
    else {

      temp = data.frame(
        resid = unlist(lapply(fitted, "[[", "residuals" )),
        node = unlist(lapply(nodes, rep, times = nrows))
      )

    }#ELSE

    if (type == "qqplot") {

      p = lattice::qqmath(~ resid | node, data = temp,
            xlab = xlab, ylab = ylab, main = main,
            panel = function(x, ...) {
              lattice::panel.qqmathline(x, ...)
              lattice::panel.qqmath(x, ...)
            })

    }#THEN
    else if (type == "hist-dens") {

      p = lattice::histogram(~ resid | node, data = temp,
            xlab = xlab, ylab = ylab, main = main, type = "density",
            panel = function(x, ...) {
              lattice::panel.histogram(x, ...)
              lattice::panel.mathdensity(dmath = dnorm, col = "black",
                         args = list(mean = mean(x),
                                  sd = fitted[[lattice::panel.number()]]$sd))
            })

    }#THEN
    else if (type == "hist") {

      p = lattice::histogram( ~ resid | node, data = temp,
            xlab = xlab, ylab = ylab, main = main)

    }#THEN
    else if (type == "fitted") {

      # check whether the residuals are there.
      if (any(!sapply(fitted, are.present, "fitted.values" )))
        stop("no fitted values present in the bn.fit object.")

      p = lattice::xyplot(resid ~ fitted | node, data = temp,
            xlab = xlab, ylab = ylab, main = main,
            panel = function(x, ...) {
              lattice::panel.xyplot(x, ...)
              lattice::panel.abline(h = 0)
            })

    }#THEN

  }#THEN
  else if (is(fitted, c("bn.fit.gnode", "bn.fit.cgnode"))) {

    # check whether the residuals are there.
    if (!are.present(fitted, "residuals"))
      stop("no residuals present in the bn.fit.gnode object.")

    # print the equivalent plot for a single node.
    if (type == "qqplot") {

      f = formula(ifelse(is.null(fitted$configs),
            "~ residuals", "~ residuals | configs"))
      p = lattice::qqmath(f, data = fitted,
            xlab = xlab, ylab = ylab, main = main,
            panel = function(x, ...) {
              lattice::panel.qqmathline(x, ...)
              lattice::panel.qqmath(x, ...)
            })

    }#THEN
    else if (type == "hist-dens") {

      f = formula(ifelse(is.null(fitted$configs),
            "~ residuals", "~ residuals | configs"))
      p = lattice::histogram(f, data = fitted,
            xlab = xlab, ylab = ylab, main = main, type = "density",
            panel = function(x, ...) {
              lattice::panel.histogram(x, ...)
              lattice::panel.mathdensity(dmath = dnorm, col = "black",
                         args = list(mean = mean(x), sd = sd(x)))
            })

    }#THEN
    else if (type == "hist") {

      f = formula(ifelse(is.null(fitted$configs),
            "~ residuals", "~ residuals | configs"))
      p = lattice::histogram(f, data = fitted,
            xlab = xlab, ylab = ylab, main = main)

    }#THEN
    else if (type == "fitted") {

      # check whether the fitted values are there.
      if (!are.present(fitted, "fitted.values"))
        stop("no fitted values present in the bn.fit.gnode object.")

      f = formula(ifelse(is.null(fitted$configs),
            "residuals ~ fitted.values", "residuals ~ fitted.values | configs"))
      p = lattice::xyplot(f, data = fitted,
            xlab = xlab, ylab = ylab, main = main,
            panel = function(x, ...) {
              lattice::panel.xyplot(x, ...)
              lattice::panel.abline(h = 0)
            })

    }#THEN

  }#THEN

  # print the plot explicitly, do not rely on auto-printing.
  print(p)

}#LATTICE.GAUSSIAN.BACKEND

# lattice backend for cross-validation boxplots.
lattice.cv.bwplot = function(means, labels, losses, main, xlab, ylab,
    connect = FALSE) {

  # check whether lattice is loaded, and try to load if it is not.
  check.and.load.package("lattice")

  # check the labels of the cross-validation objects, if any.
  if (!missing(xlab)) {

    if (!is.string.vector(xlab))
      stop("'xlab' must be a vector of character strings,",
           "the labels of the cross-validation objects.")
    if (length(xlab) != length(unique(labels)))
      stop("wrong number of labels for the cross-validation objects.")

  }#THEN
  else {

    xlab = as.character(seq(length(unique(labels))))

  }#ELSE

  # if no axis label is specified, use the loss function label when possible.
  if (missing(ylab)) {

    if (length(unique(losses)) == 1)
      ylab = loss.labels[losses[1]]
    else
      ylab = "loss"

  }#THEN

  # if no title is specified, leave it empty.
  if (missing(main))
    main = ""

  # convert the labels into a factor with the xlab as levels.
  labels = factor(labels, levels = unique(labels))
  levels(labels) = xlab

   p = lattice::bwplot(means ~ factor(labels),
         horizontal = FALSE, pch = 19, ylab = ylab, main = main,
         panel = function(...) {

           lattice::panel.grid(..., h = -1, v = 0, lty = 2)
           lattice::panel.bwplot(...)

           # connect the median points of the boxplots.
           if (connect)
             lattice::panel.average(..., fun = median, col.line = "black")

         },
         par.settings = list(box.umbrella = list(lty = 1, col = "black"),
           box.rectangle = list(col = "black", fill = "ivory"),
           plot.symbol = list(col = "black")))

  # print the plot explicitly, do not rely on auto-printing.
  print(p)

}#LATTICE.CV.BWPLOT

Try the bnlearn package in your browser

Any scripts or data that you put into this service are public.

bnlearn documentation built on Sept. 7, 2021, 1:07 a.m.