Nothing
#' Make a network object for the unrelated mean effects model (inconsistency model) containing data, priors, and a JAGS model file
#'
#' This is similar to the function \code{\link{network.data}}, except this is used for the unrelated mean effects model.
#'
#' @param Outcomes Arm-level outcomes. If it is a multinomial response, the matrix would be arms (row) by multinomial categories (column). If it is binomial or normal, it would be a vector.
#' @param Study A vector of study indicator for each arm
#' @param Treat A vector of treatment indicator for each arm. Treatments should have positive integer values starting from 1 to total number of treatments. In a study, lowest number is taken as the baseline treatment.
#' @param N A vector of total number of observations in each arm. Used for binomial and multinomial responses.
#' @param SE A vector of standard error for each arm. Used only for normal response.
#' @param response Specification of the outcomes type. Must specify one of the following: "normal", "binomial", or "multinomial".
#' @param Treat.order Treatment order which determines how treatments are compared. The first treatment that is specified is considered to be the baseline treatment. Default order is alphabetical. If the treatments are coded 1, 2, etc, then the treatment with a value of 1 would be assigned as a baseline treatment.
#' @param type Type of model fitted: either "random" for random effects model or "fixed" for fixed effects model. Default is "random".
#' @param mean.mu Prior mean for the study effect (baseline risk)
#' @param prec.mu Prior precision for the study effect (baseline risk)
#' @param mean.d Prior mean for the relative effect
#' @param prec.d Prior precision for the relative effect
#' @param hy.prior Prior for the heterogeneity parameter. Supports uniform, gamma, and half normal for normal. It should be a list of length 3, where first element should be the distribution (one of dunif, dgamma, dhnorm, dwish) and the next two are the parameters associated with the distribution. For example, list("dunif", 0, 5) give uniform prior with lower bound 0 and upper bound 5 for the heterogeneity parameter.
#' @param dic This is an indicator for whether user wants to calculate DIC. Model stores less information if you set it to FALSE.
#' @return Creates list of variables that are used to run the model using \code{\link{ume.network.run}}
#' \item{r}{\code{Outcomes} made into an array that is suitable for use in rjags code. For multinomial, it has 3 dimensions: number of study by max number of arms in studies by number of categories.}
#' \item{t}{\code{Treat} transformed into a matrix which has dimensions number of study by max number of arms in studies}
#' \item{nstudy}{Number of study}
#' \item{na}{Number of arms for each study}
#' \item{ntreat}{Number of treatment}
#' \item{b.id}{Indicator in sequence of all treatments for which treatment is base treatment in Study}
#' \item{code}{Rjags model file code that is generated using information provided by the user. To view model file inside R in a nice format, use \code{cat(network$code).}}
#' @examples
#' network <- with(thrombolytic, {
#' ume.network.data(Outcomes, Study, Treat, N = N, response = "binomial")
#' })
#' network
#' @references S. Dias, N.J. Welton, A.J. Sutton, D.M. Caldwell, G. Lu, and A.E. Ades (2013), \emph{Evidence synthesis for decision making 4: inconsistency in networks of evidence based on randomized controlled trials}, Medical Decision Making 33(5):641-656. \doi{10.1177/0272989X12455847}
#' @export
ume.network.data <- function(Outcomes, Study, Treat, N = NULL, SE = NULL, response = NULL, Treat.order = NULL, type = "random",
mean.mu = NULL, prec.mu = NULL, mean.d = NULL, prec.d = NULL, hy.prior = list("dunif", 0, 5), dic = TRUE){
if(!is.null(Treat.order)){
Treat <- relabel.vec(Treat, Treat.order)
names(Treat.order) <- 1:length(Treat.order)
}
if(!is.numeric(Treat)){
stop("Treatment has to be a numeric sequence or Treat.order has to be specified; also, for each study, base treatment has be treatment with the lowest value")
}
if(missing(Study) || missing(Treat) || missing(Outcomes)){
stop("Study, Treat, and Outcomes have to be all specified")
}
if(response == "multinomial" || response == "binomial"){
if(is.null(N)){
stop("If the response is multinomial or binomial, N has to be specified")
}
} else if (response == "normal"){
if(is.null(SE)){
stop("If the response is normal, SE has to be specified")
}
}
if(!type %in% c("fixed", "random")){
stop("type has to be either fixed or random")
}
na <- rle(Study)$lengths
if(any(na == 1)) stop("study cannot have only 1 arm or arms have to be next to each other in each study")
nstudy <- length(unique(Study))
ntreat <- unique(as.vector(Treat))
ntreat <- length(ntreat[!is.na(ntreat)])
Outcomes <- as.matrix(Outcomes)
ends <- cumsum(na) # End row of trials
starts <- c(1, ends[-length(ends)] + 1) # Start row of trials
b.Treat <- rep(NA, length(na))
b.id <- rep(F, sum(na))
for (i in 1:length(na)){
limits <- starts[i]:ends[i]
b.Treat[i] <- min(Treat[limits])
b.id[limits[b.Treat[i] == Treat[limits]]] <- T
}
# make r, t, se(or n) that has dimensions suitable for rjags coding.
t <- make.byStudy.matrix(Treat, Study)
if(response == "binomial" || response == "multinomial"){
n <- make.byStudy.matrix(N, Study)
} else if(response == "normal"){
se <- make.byStudy.matrix(SE, Study)
}
r <- make.byStudy.Outcome(Outcomes, Study, nstudy, na)
if(response != "multinomial"){
r <- r[,,1]
}
# Set prior for mu and d
if(response != "multinomial"){
if(is.null(mean.mu)){
mean.mu <- 0
}
if(is.null(mean.d)){
mean.d <- 0
}
if(is.null(prec.mu)){
prec.mu <- 0.0001
}
if(is.null(prec.d)){
prec.d <- 0.0001
}
} else if(response == "multinomial"){
ncat <- dim(Outcomes)[2]
if(is.null(mean.mu)){
mean.mu <- rep(0, ncat-1)
}
if(is.null(mean.d)){
mean.d <- rep(0, ncat-1)
}
if(is.null(prec.mu)){
prec.mu <- diag(0.0001, ncat-1)
}
if(is.null(prec.d)){
prec.d <- diag(0.0001, ncat-1)
}
}
network <- list(Outcomes = Outcomes, Study = Study, Treat = Treat, Treat.order = Treat.order, r = r, t = t, type = type, nstudy = nstudy, na = na, ntreat = ntreat, b.id = b.id, response = response, hy.prior = hy.prior, mean.d = mean.d, prec.d = prec.d, mean.mu = mean.mu, prec.mu = prec.mu, dic = dic)
if(response == "binomial" || response == "multinomial"){
network$N = N
network$n = n
} else if (response == "normal"){
network$SE = SE
network$se = se
}
if(response == "multinomial"){
network$ncat = ncat
if(network$hy.prior[[1]] != "dwish"){
network$hy.prior <- list("dwish", diag(ncat - 1), ncat -1)
}
}
code <- ume.network.rjags(network)
network$code <- code
class(network) <- "ume.network.data"
return(network)
}
ume.network.rjags <- function(network){
network <- with(network, {
if(response == "binomial"){
ume.binomial.rjags(network)
} else if(response == "normal"){
ume.normal.rjags(network)
} else if(response == "multinomial"){
ume.multinomial.rjags(network)
}
})
}
ume.multinomial.rjags <- function(network){
with(network, {
code <- paste0("model\n{",
"\n\tfor(i in 1:", nstudy, ") {",
"\n\t\tfor(k in 1:na[i]) {",
"\n\t\t\tr[i,k,1:3] ~ dmulti(p[i,k,], n[i,k])",
"\n\t\t\tfor(m in 1:", ncat, ") {",
"\n\t\t\t\tp[i,k,m] <- theta[i,k,m]/sum(theta[i,k,])",
"\n\t\t\t\tlog(theta[i,k,m]) <- mu[i,m] + delta[i,k,m]")
code <- paste0(code, "\n\t\t\t\trhat[i,k,m] <- p[i,k,m]*n[i,k]",
"\n\t\t\t\tdv[i,k,m] <- 2*r[i,k,m]*log(r[i,k,m]/rhat[i,k,m])",
"\n\t\t\t}",
"\n\t\t\tdev[i,k] <- sum(dv[i,k,])",
"\n\t\t}",
"\n\t\tresdev[i] <- sum(dev[i,na[i]])",
"\n\t}",
"\n\ttotresdev <- sum(resdev[])")
code <- paste0(code, "\n\tfor(i in 1:", nstudy, "){",
"\n\t\tfor(m in 1:", ncat, "){",
"\n\t\t\tdelta[i,1,m] <- 0",
"\n\t\t}",
"\n\t\tfor(k in 2:na[i]){",
"\n\t\t\tdelta[i,k,1] <- 0")
if(type == "random"){
code <- paste0(code, "\n\t\t\tdelta[i,k,2:", ncat, "] ~ dmnorm(md[i,k,], prec[,])")
} else if(type == "fixed"){
code <- paste0(code, "\n\t\t\tdelta[i,k,2:", ncat, "] <- md[i,k,]")
}
code <- paste0(code, "\n\t\t\tfor(j in 1:", ncat-1, "){",
"\n\t\t\t\tmd[i,k,j] <- d[t[i,1], t[i,k], j]",
"\n\t\t\t}",
"\n\t\t}",
"\n\t}")
code <- paste0(code, "\n\tfor(i in 1:", nstudy, "){",
"\n\t\tmu[i,1] <- 0",
"\n\t\tmu[i,2:", ncat, "] ~ dmnorm(mean.mu[], prec.mu[,])",
"\n\t}")
code <- paste0(code,
"\n\tfor(c in 1:", ntreat-1, "){",
"\n\t\tfor(k in (c+1):", ntreat, "){",
"\n\t\t\td[c,k,1:", ncat-1, "] ~ dmnorm(mean.d[], prec.d[,])",
"\n\t\t}",
"\n\t}")
if(type == "random"){
code <- paste0(code, ume.hy.prior.rjags(hy.prior, ncat))
}
code <- paste0(code, "\n}")
return(code)
})
}
ume.normal.rjags <- function(network){
with(network, {
code <- paste0("model\n{",
"\n\tfor(i in 1:", nstudy, ") {",
"\n\t\tdelta[i,1] <- 0",
"\n\t\tmu[i] ~ dnorm(mean.mu, prec.mu)",
"\n\t\tfor(k in 1:na[i]) {",
"\n\t\t\ttau[i,k] <- 1/pow(se[i,k],2)",
"\n\t\t\tr[i,k] ~ dnorm(theta[i,k], tau[i,k])",
"\n\t\t\ttheta[i,k] <- mu[i] + delta[i,k]"
)
code <- paste0(code,
"\n\t\t\tdev[i,k] <- (r[i,k]-theta[i,k])*(r[i,k]-theta[i,k])*tau[i,k]",
"\n\t\t}",
"\n\t\tresdev[i] <- sum(dev[i,1:na[i]])")
if(type == "random"){
code <- paste0(code, "\n\t\tfor (k in 2:na[i]) {",
"\n\t\t\tdelta[i,k] ~ dnorm(d[t[i,1],t[i,k]], prec)",
"\n\t\t}")
} else if(type == "fixed"){
code <- paste0(code, "\n\t\tfor (k in 2:na[i]) {",
"\n\t\t\tdelta[i,k] <- d[t[i,1],t[i,k]]",
"\n\t\t}")
}
code <- paste0(code,
"\n\t}",
"\n\ttotresdev <- sum(resdev[])")
code <- paste0(code,
"\n\tfor(c in 1:", ntreat -1, ") {",
"\n\t\tfor(k in (c+1):", ntreat, ") {",
"\n\t\t\td[c,k] ~ dnorm(mean.d, prec.d)",
"\n\t\t}",
"\n\t}")
if(type == "random"){
code <- paste0(code, ume.hy.prior.rjags(hy.prior, 0))
}
code <- paste0(code, "\n}")
return(code)
})
}
ume.binomial.rjags <- function(network){
with(network, {
code <- paste0("model\n{",
"\n\tfor(i in 1:", nstudy, ") {",
"\n\t\tdelta[i,1] <- 0",
"\n\t\tmu[i] ~ dnorm(mean.mu,prec.mu)",
"\n\t\tfor(k in 1:na[i]) {",
"\n\t\t\tr[i,k] ~ dbin(p[i,k], n[i,k])",
"\n\t\t\tlogit(p[i,k]) <- mu[i] + delta[i,k]"
)
code <- paste0(code,
"\n\t\t\trhat[i,k] <- p[i,k] * n[i,k]",
"\n\t\t\tdev[i,k] <- 2 * (r[i,k] * (log(r[i,k])- log(rhat[i,k])) + (n[i,k] - r[i,k]) * (log(n[i,k] - r[i,k]) - log(n[i,k] - rhat[i,k])))",
"\n\t\t}",
"\n\t\tresdev[i] <- sum(dev[i,1:na[i]])"
)
if(type == "random"){
code <- paste0(code, "\n\t\tfor (k in 2:na[i]) {",
"\n\t\t\tdelta[i,k] ~ dnorm(d[t[i,1],t[i,k]], prec)",
"\n\t\t}")
} else if(type == "fixed"){
code <- paste0(code, "\n\t\tfor (k in 2:na[i]) {",
"\n\t\t\tdelta[i,k] <- d[t[i,1],t[i,k]]",
"\n\t\t}")
}
code <- paste0(code,
"\n\t}",
"\n\ttotresdev <- sum(resdev[])")
code <- paste0(code,
"\n\tfor(c in 1:", ntreat -1, ") {",
"\n\t\tfor(k in (c+1):", ntreat, ") {",
"\n\t\t\td[c,k] ~ dnorm(mean.d, prec.d)",
"\n\t\t}",
"\n\t}")
if(type == "random"){
code <- paste0(code, ume.hy.prior.rjags(hy.prior, 0))
}
code <- paste0(code, "\n}")
return(code)
})
}
ume.hy.prior.rjags <- function(hy.prior, ncat){
code <- ""
distr <- hy.prior[[1]]
if (distr == "dunif") {
code <- paste0(code,
"\n\tsd ~ dunif(hy.prior.1, hy.prior.2)",
"\n\tprec <- pow(sd,-2)")
} else if(distr == "dgamma"){
code <- paste0(code,
"\n\tsd <- pow(prec, -0.5)",
"\n\tprec ~ dgamma(hy.prior.1, hy.prior.2)")
} else if(distr == "dhnorm"){
code <- paste0(code,
"\n\tsd ~ dnorm(hy.prior.1, hy.prior.2)T(0,)",
"\n\tprec <- pow(sd, -2)")
} else if (distr == "dwish"){
code <- paste0(code,
"\n\tprec[1:", ncat-1, ",1:", ncat-1, "] ~ dwish(hy.prior.1, hy.prior.2)",
"\n\tsigma[1:", ncat-1, ",1:", ncat-1, "] <- inverse(prec[,])")
}
return(code)
}
#' Run the model using the network object
#'
#' This is similar to the function \code{\link{network.run}}, except this is used for the unrelated mean effects model.
#'
#' @param network network object created from \code{\link{ume.network.data}} function
#' @param inits Initial values for the parameters being sampled. If left unspecified, program will generate reasonable initial values.
#' @param n.chains Number of chains to run
#' @param max.run Maximum number of iterations that user is willing to run. If the algorithm is not converging, it will run up to \code{max.run} iterations before printing a message that it did not converge
#' @param setsize Number of iterations that are run between convergence checks. If the algorithm converges fast, user wouldn't need a big setsize. The number that is printed between each convergence checks is the gelman-rubin diagnostics and we would want that to be below the conv.limit the user specifies.
#' @param n.run Final number of iterations that the user wants to store. If after the algorithm converges, user wants less number of iterations, we thin the sequence. If the user wants more iterations, we run extra iterations to reach the specified number of runs
#' @param conv.limit Convergence limit for Gelman and Rubin's convergence diagnostic. Point estimate is used to test convergence of parameters for study effect (eta), relative effect (d), and heterogeneity (log variance (logvar)).
#' @param extra.pars.save Parameters that user wants to save besides the default parameters saved. See code using \code{cat(network$code)} to see which parameters can be saved.
#' @return
#' \item{data_rjags}{Data that is put into rjags function jags.model}
#' \item{inits}{Initial values that are either specified by the user or generated as a default}
#' \item{pars.save}{Parameters that are saved. Add more parameters in extra.pars.save if other variables are desired}
#' \item{burnin}{Half of the converged sequence is thrown out as a burnin}
#' \item{n.thin}{If the number of iterations user wants (n.run) is less than the number of converged sequence after burnin, we thin the sequence and store the thinning interval}
#' \item{samples}{MCMC samples stored using jags. The returned samples have the form of mcmc.list and can be directly applied to coda functions}
#' \item{max.gelman}{Maximum Gelman and Rubin's convergence diagnostic calculated for the final sample}
#' \item{deviance}{Contains deviance statistics such as pD (effective number of parameters) and DIC (Deviance Information Criterion)}
#' @examples
#' network <- with(thrombolytic, {
#' ume.network.data(Outcomes, Study, Treat, N = N, response = "binomial")
#' })
#' \donttest{
#' result <- ume.network.run(network, n.run = 10000)
#' }
#' @export
ume.network.run <- function(network, inits = NULL, n.chains = 3, max.run = 100000, setsize = 10000, n.run = 50000,
conv.limit = 1.05, extra.pars.save = NULL){
if (!inherits(network, "ume.network.data")) {
stop('Given network is not ume.network.data. Run ume.network.data function first')
}
if(max.run < setsize){
stop("setsize should be smaller than max.run")
}
with(network, {
data <- list(r = r, t = t, na = na)
if(response == "binomial" || response == "multinomial"){
data$n <- n
} else if(response == "normal"){
data$se <- se
}
if(type == "random"){
data$hy.prior.1 <- hy.prior[[2]]
data$hy.prior.2 <- hy.prior[[3]]
}
data$mean.d = mean.d
data$prec.d = prec.d
data$mean.mu = mean.mu
data$prec.mu = prec.mu
pars.save <- c("d")
if(type == "random"){
pars.save <- c(pars.save, "delta")
if(response %in% c("normal", "binomial")){
pars.save <- c(pars.save, "sd")
} else if (response == "multinomial"){
pars.save <- c(pars.save, "sigma")
}
}
if(dic == TRUE){
pars.save <- c(pars.save, "totresdev", "resdev", "dev")
if(response == "binomial" || response == "multinomial"){
pars.save <- c(pars.save, "rhat")
} else if(response == "normal"){
pars.save <- c(pars.save, "theta")
}
}
if(!is.null(extra.pars.save)) {
extra.pars.save.check(extra.pars.save, pars.save)
pars.save <- c(pars.save, extra.pars.save)
}
if(is.null(inits)){
inits <- ume.network.inits(network, n.chains)
}
samples <- jags.fit(network, data, pars.save, inits, n.chains, max.run, setsize, n.run, conv.limit)
result <- list(network = network, data.rjags = data, inits = inits, pars.save = pars.save)
result <- c(result, samples)
if(dic == TRUE) {
result$deviance <- calculate.deviance(result)
}
class(result) <- "ume.network.result"
return(result)
})
}
ume.network.inits <- function(network, n.chains){
response <- network$response
inits <- if(response == "multinomial"){
ume.multinomial.inits(network, n.chains)
} else if(response == "binomial"){
ume.binomial.inits(network, n.chains)
} else if(response == "normal"){
ume.normal.inits(network, n.chains)
}
return(inits)
}
ume.multinomial.inits <- function(network, n.chains)
{
with(network,{
Outcomes <- Outcomes + 0.5
logits <- as.matrix(log(Outcomes[, -1]) - log(Outcomes[, 1]))
se.logits <- as.matrix(sqrt(1/Outcomes[, -1] + 1/Outcomes[, 1]))
mu <- se.mu <- matrix(NA, nstudy, ncat)
mu[,2:ncat] <- logits[b.id,]
se.mu[,2:ncat] <- se.logits[b.id,]
delta <- logits - apply(as.matrix(mu[, -1]), 2, rep, times = na)
rows.of.basetreat <- seq(dim(as.matrix(delta))[1])*as.numeric(b.id)
delta <- delta[-rows.of.basetreat,,drop=F] # Eliminate base treatment arms
###################### Using delta, mu, and se.mu to make initial values
# design matrix
base.tx <- Treat[b.id] # base treatment for N studies
end.Study <- c(0, cumsum(na)) # end row number of each trial
rows <- end.Study - seq(0, nstudy) # end number of each trial not including base treatment arms
design.mat <- matrix(0, sum(na) - nstudy, ntreat*(ntreat-1)/2) # no. non-base arms x #txs
col_names <- NULL
for(j in 2:ntreat){
for(i in 1:(j-1)){
col_names <- c(col_names, paste0("Treat", i, j))
}
}
colnames(design.mat) <- col_names
for(i in seq(nstudy)){
studytx <- Treat[(end.Study[i]+1):end.Study[i+1]] #treatments in ith Study
nonbase.tx <- studytx[studytx!=base.tx[i]] #non-baseline treatments for ith Study
for (j in seq(length(nonbase.tx))){
design.mat[j+rows[i],paste0("Treat", base.tx[i], nonbase.tx[j])] <- 1
}
}
y <- delta
d <- se.d <- matrix(NA, length(unique(Treat)), ncat - 1)
resid.var <- rep(NA, ncat -1)
for(k in 1:(ncat - 1)){
fit <- summary(lm(y[,k] ~ design.mat - 1))
d[,k] <- coef(fit)[,1]
se.d[,k] <- coef(fit)[,2]
resid.var[k] <- fit$sigma^2
}
initial.values = list()
for(i in 1:n.chains){
initial.values[[i]] = list()
}
for(i in 1:n.chains){
random.mu <- rnorm(length(mu))
initial.values[[i]][["mu"]] <- mu + se.mu * random.mu
}
if(!any(is.na(d))){
for(i in 1:n.chains){
random.d = rnorm(length(d[,1]))
d.array <- array(NA, dim = c(ntreat-1, ntreat, ncat-1))
for(jj in 1:(ncat-1)){
d.matrix <- matrix(NA, nrow = ntreat, ncol = ntreat)
d.matrix[upper.tri(d.matrix)] <- d[,jj] + se.d[,jj] * random.d
d.matrix <- d.matrix[-ntreat,]
d.array[,,jj] <- d.matrix
}
initial.values[[i]][["d"]] <- d.array
}
}
return(initial.values)
})
}
ume.normal.inits <- function(network, n.chains){
with(network,{
mu <- Outcomes[b.id]
se.mu <- SE[b.id]
delta <- Outcomes - rep(mu, times = na)
delta <- delta[!b.id,] #eliminate base-arm
inits <- ume.make.inits(network, n.chains, delta, mu, se.mu)
return(inits)
})
}
ume.binomial.inits <- function(network, n.chains){
with(network,{
Outcomes <- Outcomes + 0.5 # ensure ratios are always defined
N <- N + 1
p <- Outcomes/N
logits <- log(p/(1-p))
se.logits <- sqrt(1/Outcomes + 1/(N - Outcomes))
mu <- logits[b.id]
se.mu <- se.logits[b.id]
delta <- logits - rep(mu, times = na)
delta <- delta[!b.id,]
inits <- ume.make.inits(network, n.chains, delta, mu, se.mu)
return(inits)
})
}
ume.make.inits <- function(network, n.chains, delta, mu, se.mu){
with(network,{
# dependent variable for regression
y <- delta
# design matrix
base.tx <- Treat[b.id] # base treatment for N studies
end.Study <- c(0, cumsum(na)) # end row number of each trial
rows <- end.Study - seq(0, nstudy) # end number of each trial not including base treatment arms
design.mat <- matrix(0, sum(na) - nstudy, ntreat*(ntreat-1)/2 ) # no. non-base arms x #txs
col_names <- NULL
for(j in 2:ntreat){
for(i in 1:(j-1)){
col_names <- c(col_names, paste0("Treat", i, j))
}
}
colnames(design.mat) <- col_names
for(i in seq(nstudy)){
studytx <- Treat[(end.Study[i]+1):end.Study[i+1]] #treatments in ith Study
nonbase.tx <- studytx[studytx!=base.tx[i]] #non-baseline treatments for ith Study
for (j in seq(length(nonbase.tx))){
design.mat[j+rows[i],paste0("Treat", base.tx[i], nonbase.tx[j])] <- 1
}
}
fit <- summary(lm(y ~ design.mat - 1))
d <- se.d <- rep(NA, ntreat*(ntreat-1)/2)
if(length(coef(fit)[,1]) == length(d)){ #check if there is any NA in the estimated fit
d <- coef(fit)[,1]
se.d <- coef(fit)[,2]
resid.var <- fit$sigma^2
}
############# Generate initial values
initial.values = list()
for(i in 1:n.chains){
initial.values[[i]] = list()
}
for(i in 1:n.chains){
random.mu <- rnorm(length(mu))
initial.values[[i]][["mu"]] <- mu + se.mu * random.mu
}
if(!is.nan(fit$fstat[1]) & !any(is.na(d))){
for(i in 1:n.chains){
random.d = rnorm(length(d))
d.matrix <- matrix(NA, nrow = ntreat, ncol = ntreat)
d.matrix[upper.tri(d.matrix)] <- d + se.d * random.d
d.matrix <- d.matrix[-ntreat,]
initial.values[[i]][["d"]] <- d.matrix
if(type == "random"){
df <- fit$df[2]
random.ISigma <- rchisq(1, df)
sigma2 <- resid.var * df/random.ISigma
if(hy.prior[[1]] == "dunif"){
if(sqrt(sigma2) > hy.prior[[3]]){
stop("data has more variability than your prior does")
}
}
if(hy.prior[[1]] == "dgamma"){
initial.values[[i]][["prec"]] <- 1/sigma2
} else if(hy.prior[[1]] == "dunif" || hy.prior[[1]] == "dhnorm"){
initial.values[[i]][["sd"]] <- sqrt(sigma2)
}
# generate values for delta
delta = matrix(NA, nrow = nrow(t), ncol = ncol(t))
for(j in 2:ncol(delta)){
for(ii in 1:nrow(delta)){
if(!is.na(d.matrix[t[ii, 1], t[ii, j]])) delta[ii,j] = rnorm(1, mean = d.matrix[t[ii, 1], t[ii, j]], sd = sqrt(sigma2))
}
}
initial.values[[i]][["delta"]] <- delta
}
}
}
return(initial.values)
})
}
pick.summary.variables.ume <- function(result, extra.pars = NULL, only.pars = NULL){
samples <- result[["samples"]]
varnames <- dimnames(samples[[1]])[[2]]
varnames.split <- sapply(strsplit(varnames, "\\["), '[[', 1)
varnames.split <- gsub("[[:digit:]]","",varnames.split)
if(!is.null(only.pars)){
if(!all(only.pars %in% varnames.split)){
stop(paste0(only.pars, "was not sampled"))
}
}
if(is.null(only.pars)){
pars <- c("d", "sd", "sigma")
} else{
pars <- only.pars
}
if(!is.null(extra.pars)){
if(!extra.pars %in% varnames.split){
stop(paste0(extra.pars, " is not saved in result"))
}
pars <- c(pars, extra.pars)
}
summary.samples <- lapply(samples, function(x){x[,varnames.split %in% pars, drop = F]})
summary.samples <- coda::mcmc.list(summary.samples)
summary.samples
}
#' Summarize result run by \code{\link{ume.network.run}}
#'
#' This function uses summary function in coda package to summarize mcmc.list object. Monte carlo error (Time-series SE) is also obtained using the coda package and is printed in the summary as a default.
#'
#' @param object Result object created by \code{\link{ume.network.run}} function
#' @param ... Additional arguments affecting the summary produced
#' @return Returns summary of the ume network model result
#' @examples
#' network <- with(smoking, {
#' ume.network.data(Outcomes, Study, Treat, N = N, response = "binomial", type = "random")
#' })
#' \donttest{
#' result <- ume.network.run(network)
#' summary(result)
#' }
#' @export
summary.ume.network.result <- function(object, ...){
if(!inherits(object, "ume.network.result")) {
stop('This is not the output from ume.network.run. Need to run ume.network.run function first')
}
summary.samples <- pick.summary.variables.ume(object, ...)
rval <- list("summary.samples"= summary(summary.samples),
"deviance" = unlist(object$deviance[1:3]),
"total_n" = sum(object$network$na))
class(rval) <- 'summary.ume.network.result'
rval
}
#' Plot traceplot and posterior density of the result using contrast data
#'
#' This function uses plotting function in coda package to plot mcmc.list object
#'
#' @param x Result object created by \code{\link{ume.network.run}} function
#' @param ... Additional arguments affecting the plot produced
#' @return None
#' @examples
#' network <- with(smoking, {
#' ume.network.data(Outcomes, Study, Treat, N = N, response = "binomial", type = "random")
#' })
#' \donttest{
#' result <- ume.network.run(network)
#' plot(result)
#' }
#' @export
plot.ume.network.result <- function(x, ...) {
if(!inherits(x, "ume.network.result")) {
stop('This is not the output from ume.network.run. Need to run ume.network.run function first')
}
summary.samples <- pick.summary.variables.ume(x, ...)
plot(summary.samples)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.