Nothing
#' Fitting Bayesian VAR with Coefficient and Covariance Prior
#'
#' `r lifecycle::badge("maturing")`
#' This function fits BVAR.
#' Covariance term can be homoskedastic or heteroskedastic (stochastic volatility).
#' It can have Minnesota, SSVS, and Horseshoe prior.
#'
#' @param y Time series data of which columns indicate the variables
#' @param p VAR lag
#' @param num_chains Number of MCMC chains
#' @param num_iter MCMC iteration number
#' @param num_burn Number of burn-in (warm-up). Half of the iteration is the default choice.
#' @param thinning Thinning every thinning-th iteration
#' @param bayes_spec A BVAR model specification by [set_bvar()], [set_ssvs()], or [set_horseshoe()].
#' @param cov_spec `r lifecycle::badge("experimental")` SV specification by [set_sv()].
#' @param intercept `r lifecycle::badge("experimental")` Prior for the constant term by [set_intercept()].
#' @param include_mean Add constant term (Default: `TRUE`) or not (`FALSE`)
#' @param minnesota Apply cross-variable shrinkage structure (Minnesota-way). By default, `TRUE`.
#' @param ggl If `TRUE` (default), use additional group shrinkage parameter for group structure.
#' Otherwise, use group shrinkage parameter instead of global shirnkage parameter.
#' Applies to HS, NG, and DL priors.
#' @param save_init Save every record starting from the initial values (`TRUE`).
#' By default, exclude the initial values in the record (`FALSE`), even when `num_burn = 0` and `thinning = 1`.
#' If `num_burn > 0` or `thinning != 1`, this option is ignored.
#' @param convergence Convergence threshold for rhat < convergence. By default, `NULL` which means no warning.
#' @param verbose Print the progress bar in the console. By default, `FALSE`.
#' @param num_thread Number of threads
#' @details
#' Cholesky stochastic volatility modeling for VAR based on
#' \deqn{\Sigma_t^{-1} = L^T D_t^{-1} L},
#' and implements corrected triangular algorithm for Gibbs sampler.
#' @return `var_bayes()` returns an object named `bvarsv` [class].
#' \describe{
#' \item{coefficients}{Posterior mean of coefficients.}
#' \item{chol_posterior}{Posterior mean of contemporaneous effects.}
#' \item{param}{Every set of MCMC trace.}
#' \item{param_names}{Name of every parameter.}
#' \item{group}{Indicators for group.}
#' \item{num_group}{Number of groups.}
#' \item{df}{Numer of Coefficients: `3m + 1` or `3m`}
#' \item{p}{VAR lag}
#' \item{m}{Dimension of the data}
#' \item{obs}{Sample size used when training = `totobs` - `p`}
#' \item{totobs}{Total number of the observation}
#' \item{call}{Matched call}
#' \item{process}{Description of the model, e.g. `VHAR_SSVS_SV`, `VHAR_Horseshoe_SV`, or `VHAR_minnesota-part_SV`}
#' \item{type}{include constant term (`const`) or not (`none`)}
#' \item{spec}{Coefficients prior specification}
#' \item{sv}{log volatility prior specification}
#' \item{intercept}{Intercept prior specification}
#' \item{init}{Initial values}
#' \item{chain}{The numer of chains}
#' \item{iter}{Total iterations}
#' \item{burn}{Burn-in}
#' \item{thin}{Thinning}
#' \item{y0}{\eqn{Y_0}}
#' \item{design}{\eqn{X_0}}
#' \item{y}{Raw input}
#' }
#' If it is SSVS or Horseshoe:
#' \describe{
#' \item{pip}{Posterior inclusion probabilities.}
#' }
#' @references
#' Carriero, A., Chan, J., Clark, T. E., & Marcellino, M. (2022). *Corrigendum to “Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors” \[J. Econometrics 212 (1)(2019) 137-154\]*. Journal of Econometrics, 227(2), 506-512.
#'
#' Chan, J., Koop, G., Poirier, D., & Tobias, J. (2019). *Bayesian Econometric Methods (2nd ed., Econometric Exercises)*. Cambridge: Cambridge University Press.
#'
#' Cogley, T., & Sargent, T. J. (2005). *Drifts and volatilities: monetary policies and outcomes in the post WWII US*. Review of Economic Dynamics, 8(2), 262-302.
#'
#' Gruber, L., & Kastner, G. (2022). *Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!* arXiv.
#'
#' Huber, F., Koop, G., & Onorante, L. (2021). *Inducing Sparsity and Shrinkage in Time-Varying Parameter Models*. Journal of Business & Economic Statistics, 39(3), 669-683.
#'
#' Korobilis, D., & Shimizu, K. (2022). *Bayesian Approaches to Shrinkage and Sparse Estimation*. Foundations and Trends® in Econometrics, 11(4), 230-354.
#'
#' Ray, P., & Bhattacharya, A. (2018). *Signal Adaptive Variable Selector for the Horseshoe Prior*. arXiv.
#' @importFrom posterior as_draws_df bind_draws summarise_draws
#' @order 1
#' @export
var_bayes <- function(y,
p,
num_chains = 1,
num_iter = 1000,
num_burn = floor(num_iter / 2),
thinning = 1,
bayes_spec = set_bvar(),
cov_spec = set_ldlt(),
intercept = set_intercept(),
include_mean = TRUE,
minnesota = TRUE,
ggl = TRUE,
save_init = FALSE,
convergence = NULL,
verbose = FALSE,
num_thread = 1) {
if (!all(apply(y, 2, is.numeric))) {
stop("Every column must be numeric class.")
}
if (!is.matrix(y)) {
y <- as.matrix(y)
}
dim_data <- ncol(y)
# Y0 = X0 B + Z---------------------
Y0 <- build_response(y, p, p + 1)
if (!is.null(colnames(y))) {
name_var <- colnames(y)
} else {
name_var <- paste0("y", seq_len(dim_data))
colnames(y) <- name_var
}
colnames(Y0) <- name_var
if (!is.logical(include_mean)) {
stop("'include_mean' is logical.")
}
X0 <- build_design(y, p, include_mean)
name_lag <- concatenate_colnames(name_var, 1:p, include_mean) # in misc-r.R file
colnames(X0) <- name_lag
num_design <- nrow(Y0)
dim_design <- ncol(X0)
num_alpha <- dim_data^2 * p
num_eta <- dim_data * (dim_data - 1) / 2
# model specification---------------
if (!(
is.bvharspec(bayes_spec) ||
is.ssvsinput(bayes_spec) ||
is.horseshoespec(bayes_spec) ||
is.ngspec(bayes_spec) ||
is.dlspec(bayes_spec) ||
is.gdpspec(bayes_spec)
)) {
stop("Provide 'bvharspec', 'ssvsinput', 'horseshoespec', 'ngspec', 'dlspec', or 'gdpspec' for 'bayes_spec'.")
}
if (!is.covspec(cov_spec)) {
stop("Provide 'covspec' for 'cov_spec'.")
}
if (!is.interceptspec(intercept)) {
stop("Provide 'interceptspec' for 'intercept'.")
}
if (length(cov_spec$shape) == 1) {
cov_spec$shape <- rep(cov_spec$shape, dim_data)
cov_spec$scale <- rep(cov_spec$scale, dim_data)
}
if (length(intercept$mean_non) == 1) {
intercept$mean_non <- rep(intercept$mean_non, dim_data)
}
# MCMC iterations-------------------
if (num_iter < 1) {
stop("Iterate more than 1 times for MCMC.")
}
if (num_iter < num_burn) {
stop("'num_iter' should be larger than 'num_burn'.")
}
if (thinning < 1) {
stop("'thinning' should be non-negative.")
}
# prior_nm <- bayes_spec$prior
prior_nm <- ifelse(
bayes_spec$prior == "MN_Hierarchical",
"Minnesota",
bayes_spec$prior
)
# Initialization--------------------
param_init <- lapply(
seq_len(num_chains),
function(x) {
list(
init_coef = matrix(runif(dim_data * dim_design, -1, 1), ncol = dim_data),
init_contem = exp(runif(num_eta, -1, 0)) # Cholesky factor
)
}
)
glob_idmat <- build_grpmat(
p = p,
dim_data = dim_data,
dim_design = num_alpha / dim_data,
num_coef = num_alpha,
minnesota = ifelse(minnesota, "longrun", "no"),
include_mean = FALSE
)
grp_id <- unique(c(glob_idmat))
if (minnesota) {
# own_id <- 2
# cross_id <- seq_len(p + 1)[-2]
own_id <- seq(2, 2 * p, by = 2)
cross_id <- seq(1, 2 * p, by = 2)
} else {
own_id <- 1
cross_id <- 2
}
num_grp <- length(grp_id)
if (prior_nm == "Minnesota") {
if (bayes_spec$process != "BVAR") {
stop("'bayes_spec' must be the result of 'set_bvar()'.")
}
# if (bayes_spec$prior != "Minnesota") {
# stop("In 'set_bvar()', just input numeric values.")
# }
if (is.null(bayes_spec$sigma)) {
bayes_spec$sigma <- apply(y, 2, sd)
}
if (is.null(bayes_spec$delta)) {
bayes_spec$delta <- rep(0, dim_data)
}
if (length(bayes_spec$delta) == 1) {
bayes_spec$delta <- rep(bayes_spec$delta, dim_data)
}
param_prior <- append(bayes_spec, list(p = p))
if (bayes_spec$hierarchical) {
param_prior$shape <- bayes_spec$lambda$param[1]
param_prior$rate <- bayes_spec$lambda$param[2]
param_prior$grid_size <- bayes_spec$lambda$grid_size
prior_nm <- "MN_Hierarchical"
param_init <- lapply(
param_init,
function(init) {
append(
init,
list(
own_lambda = runif(1, 0, 1),
cross_lambda = runif(1, 0, 1),
contem_lambda = runif(1, 0, 1)
)
)
}
)
}
} else if (prior_nm == "SSVS") {
# if (length(bayes_spec$coef_spike) == 1) {
# bayes_spec$coef_spike <- rep(bayes_spec$coef_spike, num_alpha)
# }
# if (length(bayes_spec$coef_slab) == 1) {
# bayes_spec$coef_slab <- rep(bayes_spec$coef_slab, num_alpha)
# }
# if (length(bayes_spec$coef_mixture) == 1) {
# bayes_spec$coef_mixture <- rep(bayes_spec$coef_mixture, num_grp)
# }
if (length(bayes_spec$coef_s1) == 2) {
coef_s1 <- numeric(num_grp)
coef_s1[grp_id %in% own_id] <- bayes_spec$coef_s1[1]
coef_s1[grp_id %in% cross_id] <- bayes_spec$coef_s1[2]
bayes_spec$coef_s1 <- coef_s1
}
if (length(bayes_spec$coef_s2) == 2) {
coef_s2 <- numeric(num_grp)
coef_s2[grp_id %in% own_id] <- bayes_spec$coef_s2[1]
coef_s2[grp_id %in% cross_id] <- bayes_spec$coef_s2[2]
bayes_spec$coef_s2 <- coef_s2
}
# if (length(bayes_spec$chol_spike) == 1) {
# bayes_spec$chol_spike <- rep(bayes_spec$chol_spike, num_eta)
# }
# if (length(bayes_spec$chol_slab) == 1) {
# bayes_spec$chol_slab <- rep(bayes_spec$chol_slab, num_eta)
# }
# if (length(bayes_spec$chol_mixture) == 1) {
# bayes_spec$chol_mixture <- rep(bayes_spec$chol_mixture, num_eta)
# }
# if (all(is.na(bayes_spec$coef_spike)) || all(is.na(bayes_spec$coef_slab))) {
# # Conduct semiautomatic function using var_lm()
# stop("Specify spike-and-slab of coefficients.")
# }
# if (!(
# length(bayes_spec$coef_spike) == num_alpha &&
# length(bayes_spec$coef_slab) == num_alpha &&
# length(bayes_spec$coef_mixture) == num_grp
# )) {
# stop("Invalid 'coef_spike', 'coef_slab', and 'coef_mixture' size.")
# }
param_prior <- bayes_spec
param_init <- lapply(
param_init,
function(init) {
coef_mixture <- runif(num_grp, -1, 1)
coef_mixture <- exp(coef_mixture) / (1 + exp(coef_mixture)) # minnesota structure?
init_coef_dummy <- rbinom(num_alpha, 1, .5) # minnesota structure?
chol_mixture <- runif(num_eta, -1, 1)
chol_mixture <- exp(chol_mixture) / (1 + exp(chol_mixture))
# init_chol_dummy <- rbinom(num_eta, 1, .5)
init_coef_slab <- exp(runif(num_alpha, -1, 1))
init_contem_slab <- exp(runif(num_eta, -1, 1))
append(
init,
list(
init_coef_dummy = init_coef_dummy,
coef_mixture = coef_mixture,
coef_slab = init_coef_slab,
chol_mixture = chol_mixture,
contem_slab = init_contem_slab,
coef_spike_scl = runif(1, 0, 1),
chol_spike_scl = runif(1, 0, 1)
)
)
}
)
} else if (prior_nm == "Horseshoe") {
if (length(bayes_spec$local_sparsity) != dim_design) {
if (length(bayes_spec$local_sparsity) == 1) {
bayes_spec$local_sparsity <- rep(bayes_spec$local_sparsity, num_alpha)
} else {
stop("Length of the vector 'local_sparsity' should be dim * p or dim * p + 1.")
}
}
# bayes_spec$global_sparsity <- rep(bayes_spec$global_sparsity, num_grp)
bayes_spec$group_sparsity <- rep(bayes_spec$group_sparsity, num_grp)
param_prior <- list()
param_init <- lapply(
param_init,
function(init) {
local_sparsity <- exp(runif(num_alpha, -1, 1))
# global_sparsity <- exp(runif(num_grp, -1, 1))
global_sparsity <- exp(runif(1, -1, 1))
group_sparsity <- exp(runif(num_grp, -1, 1))
contem_local_sparsity <- exp(runif(num_eta, -1, 1)) # sd = local * global
contem_global_sparsity <- exp(runif(1, -1, 1)) # sd = local * global
append(
init,
list(
local_sparsity = local_sparsity,
global_sparsity = global_sparsity,
group_sparsity = group_sparsity,
contem_local_sparsity = contem_local_sparsity,
contem_global_sparsity = contem_global_sparsity
)
)
}
)
} else if (prior_nm == "NG") {
# if (length(bayes_spec$local_shape) == 1) {
# bayes_spec$local_shape <- rep(bayes_spec$local_shape, num_alpha)
# }
# if (length(bayes_spec$contem_shape) == 1) {
# bayes_spec$contem_shape <- rep(bayes_spec$contem_shape, num_eta)
# }
param_prior <- bayes_spec
param_init <- lapply(
param_init,
function(init) {
local_sparsity <- exp(runif(num_alpha, -1, 1))
global_sparsity <- exp(runif(1, -1, 1))
group_sparsity <- exp(runif(num_grp, -1, 1))
contem_local_sparsity <- exp(runif(num_eta, -1, 1)) # sd = local * global
contem_global_sparsity <- exp(runif(1, -1, 1)) # sd = local * global
append(
init,
list(
local_shape = runif(num_grp, 0, 1),
contem_shape = runif(1, 0, 1),
local_sparsity = local_sparsity,
global_sparsity = global_sparsity,
group_sparsity = group_sparsity,
contem_local_sparsity = contem_local_sparsity,
contem_global_sparsity = contem_global_sparsity
)
)
}
)
} else if (prior_nm == "DL") {
# if (length(bayes_spec$dirichlet) == 1) {
# bayes_spec$dirichlet <- 1 / num_alpha^(1 + .01)
# }
# if (length(bayes_spec$contem_dirichlet) == 1) {
# bayes_spec$contem_dirichlet <- 1 / num_eta^(1 + .01)
# }
param_prior <- bayes_spec
param_init <- lapply(
param_init,
function(init) {
local_sparsity <- exp(runif(num_alpha, -1, 1))
global_sparsity <- exp(runif(1, -1, 1))
# group_sparsity <- exp(runif(num_grp, -1, 1))
contem_local_sparsity <- exp(runif(num_eta, -1, 1)) # sd = local * global
contem_global_sparsity <- exp(runif(1, -1, 1)) # sd = local * global
append(
init,
list(
local_sparsity = local_sparsity,
global_sparsity = global_sparsity,
# group_sparsity = group_sparsity,
contem_local_sparsity = contem_local_sparsity,
contem_global_sparsity = contem_global_sparsity
)
)
}
)
} else if (prior_nm == "GDP") {
param_prior <- bayes_spec
param_init <- lapply(
param_init,
function(init) {
local_sparsity <- exp(runif(num_alpha, -1, 1))
group_rate <- exp(runif(num_grp, -1, 1))
contem_local_sparsity <- exp(runif(num_eta, -1, 1)) # sd = local * global
contem_local_rate <- exp(runif(num_eta, -1, 1))
coef_shape <- runif(1, 0, 1)
coef_rate <- runif(1, 0, 1)
contem_shape <- runif(1, 0, 1)
contem_rate <- runif(1, 0, 1)
append(
init,
list(
local_sparsity = local_sparsity,
group_rate = group_rate,
contem_local_sparsity = contem_local_sparsity,
contem_rate = contem_local_rate,
gamma_shape = coef_shape,
gamma_rate = coef_rate,
contem_gamma_shape = contem_shape,
contem_gamma_rate = contem_rate
)
)
}
)
}
prior_type <- switch(prior_nm,
"Minnesota" = 1,
"SSVS" = 2,
"Horseshoe" = 3,
"MN_Hierarchical" = 4,
"NG" = 5,
"DL" = 6,
"GDP" = 7
)
if (num_thread > get_maxomp()) {
warning("'num_thread' is greater than 'omp_get_max_threads()'. Check with bvhar:::get_maxomp(). Check OpenMP support of your machine with bvhar:::check_omp().")
}
if (num_thread > num_chains && num_chains != 1) {
warning("'num_thread' > 'num_chains' will not use every thread. Specify as 'num_thread' <= 'num_chains'.")
}
if (num_burn == 0 && thinning == 1 && save_init) {
num_burn <- -1
}
if (is.svspec(cov_spec)) {
if (length(cov_spec$initial_mean) == 1) {
cov_spec$initial_mean <- rep(cov_spec$initial_mean, dim_data)
}
if (length(cov_spec$initial_prec) == 1) {
cov_spec$initial_prec <- cov_spec$initial_prec * diag(dim_data)
}
param_init <- lapply(
param_init,
function(init) {
append(
init,
list(
lvol_init = runif(dim_data, -1, 1),
lvol = matrix(exp(runif(dim_data * num_design, -1, 1)), ncol = dim_data), # log-volatilities
lvol_sig = exp(runif(dim_data, -1, 1)) # always positive
)
)
}
)
param_cov <- cov_spec[c("shape", "scale", "initial_mean", "initial_prec")]
} else {
param_init <- lapply(
param_init,
function(init) {
append(
init,
list(init_diag = exp(runif(dim_data, -1, 1))) # always positive
)
}
)
param_cov <- cov_spec[c("shape", "scale")]
}
res <- estimate_sur(
num_chains = num_chains,
num_iter = num_iter,
num_burn = num_burn,
thin = thinning,
x = X0,
y = Y0,
param_reg = param_cov,
param_prior = param_prior,
param_intercept = intercept[c("mean_non", "sd_non")],
param_init = param_init,
prior_type = prior_type,
ggl = ggl,
grp_id = grp_id,
own_id = own_id,
cross_id = cross_id,
grp_mat = glob_idmat,
include_mean = include_mean,
seed_chain = sample.int(.Machine$integer.max, size = num_chains),
display_progress = verbose,
nthreads = num_thread
)
res <- do.call(rbind, res)
rec_names <- colnames(res)
param_names <- gsub(pattern = "_record$", replacement = "", rec_names)
# res <- apply(res, 2, function(x) do.call(rbind, x))
res <- apply(
res,
2,
function(x) {
if (is.vector(x[[1]])) {
return(as.matrix(unlist(x)))
}
do.call(rbind, x)
}
)
names(res) <- rec_names
# summary across chains--------------------------------
res$coefficients <- matrix(colMeans(res$alpha_record), ncol = dim_data)
res$sparse_coef <- matrix(colMeans(res$alpha_sparse_record), ncol = dim_data)
if (include_mean) {
res$coefficients <- rbind(res$coefficients, colMeans(res$c_record))
res$sparse_coef <- rbind(res$sparse_coef, colMeans(res$c_sparse_record))
}
mat_lower <- matrix(0L, nrow = dim_data, ncol = dim_data)
diag(mat_lower) <- rep(1L, dim_data)
mat_lower[lower.tri(mat_lower, diag = FALSE)] <- colMeans(res$a_record)
res$chol_posterior <- mat_lower
colnames(res$coefficients) <- name_var
rownames(res$coefficients) <- name_lag
colnames(res$sparse_coef) <- name_var
rownames(res$sparse_coef) <- name_lag
colnames(res$chol_posterior) <- name_var
rownames(res$chol_posterior) <- name_var
res$pip <- colMeans(res$alpha_sparse_record != 0)
res$pip <- matrix(res$pip, ncol = dim_data)
if (include_mean) {
res$pip <- rbind(res$pip, rep(1L, dim_data))
}
colnames(res$pip) <- name_var
rownames(res$pip) <- name_lag
# if (bayes_spec$prior == "SSVS") {
# res$pip <- colMeans(res$gamma_record)
# res$pip <- matrix(res$pip, ncol = dim_data)
# if (include_mean) {
# res$pip <- rbind(res$pip, rep(1L, dim_data))
# }
# colnames(res$pip) <- name_var
# rownames(res$pip) <- name_lag
# } else if (bayes_spec$prior == "Horseshoe") {
# res$pip <- 1 - matrix(colMeans(res$kappa_record), ncol = dim_data)
# if (include_mean) {
# res$pip <- rbind(res$pip, rep(1L, dim_data))
# }
# colnames(res$pip) <- name_var
# rownames(res$pip) <- name_lag
# }
# Preprocess the results--------------------------------
if (num_chains > 1) {
res[rec_names] <- lapply(
seq_along(res[rec_names]),
function(id) {
split_chain(res[rec_names][[id]], chain = num_chains, varname = param_names[id])
}
)
} else {
res[rec_names] <- lapply(
seq_along(res[rec_names]),
function(id) {
colnames(res[rec_names][[id]]) <- paste0(param_names[id], "[", seq_len(ncol(res[rec_names][[id]])), "]")
res[rec_names][[id]]
}
)
}
res[rec_names] <- lapply(res[rec_names], as_draws_df)
# rec$param <- bind_draws(res[rec_names])
res$param <- bind_draws(
res$alpha_record,
res$a_record,
res$alpha_sparse_record,
res$a_sparse_record
)
if (is.svspec(cov_spec)) {
res$param <- bind_draws(
res$param,
res$h_record,
res$h0_record,
res$sigh_record
)
} else {
res$param <- bind_draws(
res$param,
res$d_record
)
}
if (include_mean) {
res$param <- bind_draws(
res$param,
res$c_record,
res$c_sparse_record
)
}
if (bayes_spec$prior == "SSVS") {
res$param <- bind_draws(
res$param,
res$gamma_record
)
} else if (bayes_spec$prior == "Horseshoe") {
res$param <- bind_draws(
res$param,
res$lambda_record,
res$eta_record,
res$tau_record,
res$kappa_record
)
} else if (bayes_spec$prior == "NG") {
res$param <- bind_draws(
res$param,
res$lambda_record,
res$eta_record,
res$tau_record
)
} else if (bayes_spec$prior == "DL") {
res$param <- bind_draws(
res$param,
res$lambda_record,
res$tau_record
)
} else if (bayes_spec$prior == "GDP") {
#
}
res[rec_names] <- NULL
res$param_names <- param_names
if (!is.null(convergence)) {
conv_diagnostics <- summarise_draws(res$param, "rhat")
if (any(conv_diagnostics$rhat >= convergence)) {
warning(
sprintf(
"Convergence warning with Rhat >= %f:\n%s",
convergence,
paste0(conv_diagnostics$variable[conv_diagnostics$rhat >= convergence], collapse = ", ")
)
)
}
}
res$group <- glob_idmat
res$num_group <- length(grp_id)
# if (bayes_spec$prior == "Minnesota") {
# res$prior_mean <- prior_mean
# res$prior_prec <- prior_prec
# }
res$ggl <- ggl
# variables------------
res$df <- dim_design
res$p <- p
res$m <- dim_data
res$obs <- nrow(Y0)
res$totobs <- nrow(y)
# model-----------------
res$call <- match.call()
res$process <- paste("VAR", bayes_spec$prior, cov_spec$process, sep = "_")
res$type <- ifelse(include_mean, "const", "none")
res$spec <- bayes_spec
res$sv <- cov_spec
res$intercept <- intercept
res$init <- param_init
res$chain <- num_chains
res$iter <- num_iter
res$burn <- num_burn
res$thin <- thinning
# data------------------
res$y0 <- Y0
res$design <- X0
res$y <- y
class(res) <- "bvharsp"
if (is.svspec(cov_spec)) {
class(res) <- c("bvarsv", "svmod", class(res)) # remove bvarsv later
} else {
class(res) <- c("bvarldlt", "ldltmod", class(res))
}
if (bayes_spec$prior == "Horseshoe") {
class(res) <- c(class(res), "hsmod")
} else if (bayes_spec$prior == "SSVS") {
class(res) <- c(class(res), "ssvsmod")
} else if (bayes_spec$prior == "NG") {
class(res) <- c(class(res), "ngmod")
} else if (bayes_spec$prior == "DL") {
class(res) <- c(class(res), "dlmod")
} else if (bayes_spec$prior == "GDP") {
class(res) <- c(class(res), "gdpmod")
}
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.