Nothing
## Copyright (C) 2012 Marius Hofert, Ivan Kojadinovic, Martin Maechler, and Jun Yan
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
## FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
### Explore, i.e., plot of poly* (= polyG, polyJ) for all methods ##############
### ===== =====
library(copula)
library(lattice)
## Animation: only if available, and the user does not want to skip it:
do.animation <- require("animation") && (!exists("dont.animate") || !dont.animate)
options(warn=1)
## expected evaluation points for estimating Gumbel and Joe copulas ###########
eep.fun <- function(family, alpha, d, n.MC=5000){
vapply(alpha, function(alph)
{
th <- 1/alph
cop <- onacopulaL(family, list(th, 1:d))
U <- rnacopula(n.MC, cop)
switch(family,
"Gumbel" =
{
mean(rowSums(cop@copula@iPsi(U, th))^alph)
},
"Joe" =
{
U. <- (1-U)^th
lh <- rowSums(log1p(-U.)) # log(h(..))
l1_h <- log(-expm1(lh))
mean(exp(lh-l1_h))
}, stop("wrong family in eep.fun()"))
}, NA_real_)
}
### compute & plot function for a vector of alphas
plot.poly <- function(family, xlim, ylim, method, alpha, d, n.out = 128,
pch = 4, cex = 0.4)
{
stopifnot(is.numeric(alpha), (len <- length(alpha)) >= 1, is.numeric(d), d == round(d),
is.numeric(xlim), xlim > 0, is.character(method))
cols <- colorRampPalette(c("red", "orange", "darkgreen", "turquoise", "blue"),
space="Lab")(len)
switch(family,
"Gumbel" = {
FUN <- copula:::polyG
str <- "G"
},
"Joe" = {
FUN <- copula:::polyJ
str <- "J"
},
stop("wrong 'family'"))
tit <- paste("poly", str, "(log(x), alpha=..., d=", d,
", log=TRUE, method=\"",method,"\")", sep="")
xx <- seq(xlim[1], xlim[2], length = n.out)
lx <- log(xx)
R <- sapply(alpha, function(ALP)
FUN(lx, alpha= ALP, d=d, method=method, log=TRUE))
matplot(xx, R, xlim=xlim, ylim=ylim, main = tit, type = "o", pch=pch, cex=cex,
xlab="x", ylab=paste("log(poly",str,"(log(x), ...))", sep=""),
lty = 1, lwd = 1.4, col=cols)
label <- as.expression(lapply(1:len, function(i)
substitute(alpha == A, list(A = alpha[i]))))
legend("bottomright", label, bty="n", lwd=1.4, col=cols, pch=pch, pt.cex=cex)
invisible(list(f.x = R, x = xx))
}## {plot.poly}
### animation in alpha
if(do.animation)
## animation of poly* functions
## m = number of frames
## d = dimension
## method = method for polyG
poly.ani <- function(family, m, d, method, xlim, ylim)
{
switch(family,
"Gumbel" = {
fun <- copula:::polyG
str <- "G"
},
"Joe" = {
fun <- copula:::polyJ
str <- "J"
},
{stop("wrong family in plot.poly")})
alphas <- (1:m)/(m+1) # alphas
eep <- eep.fun(family, alphas, d) # corresponding expected evaluation points for Gumbel
x <- seq(xlim[1], xlim[2], length.out=1000)
lx <- log(x)
## Return a list of xyplot objects :
lapply(1:m, function(i) {
if(i %% 5 == 1) print(paste(formatC(round(i/m*100), width=3),"% done",sep="")) # progress
y <- fun(lx, alpha=alphas[i], d=d, method=method, log=TRUE)
p <- xyplot(y~x, type="l", aspect = 1, xlab= "x",
ylab=paste("log(poly",str,"(log(x), ...))",sep=""),
xlim=xlim, ylim=ylim, key=
list(x=0.35, y=0.1,
lines=list(lty=1, col="black"),
text=list(paste("expected x-value for alpha=", alphas[i],sep=""))),
panel=function(...){
panel.xyplot(...)
panel.abline(v=eep[i]) # vertical line at expected value
}, main=paste("poly",str,"(log(x), alpha=",alphas[i],
", d=",d,", method=",method,", log=TRUE)",sep=""))
list(y=y, plot=p)
})
}## {poly.ani}
### Gumbel #####################################################################
### plots for small d
family <- "Gumbel"
polyG <- copula:::polyG
polyG.meths <- eval(formals(polyG)$method, envir = asNamespace("copula"))
##
alpha <- c(0.99, 0.5, 0.01) # alphas; plot largest first, so that all values are visible
xlim <- c(1e-16, 1000)
ylim <- c(-40, 40)
(ev <- eep.fun(family, alpha=alpha, d=5)) # 4.927077 2.462882 1.025498
stopifnot(all(xlim[1] < ev, ev < xlim[2]))
##
(my.polyG.meths <- polyG.meths[!(polyG.meths %in% c("dsumSibuya", "dsSib.RmpfrM"))])
pp5 <- sapply(my.polyG.meths, function(met) {
r <- plot.poly(family, xlim=xlim, ylim=ylim, method = met, alpha=alpha, d=5)
Sys.sleep(2)
r
}, simplify = FALSE)
## => all are fine, even for the much larger range than the expected values: all finite:
t(sapply(pp5, function(L) apply(L$f.x, 2, function(.) sum(!is.finite(.)))))#-> 0 0 0 {no non-finite}
### plots for large d -- quite different picture!
xlim <- c(1e-16, 200)
ylim <- c(300, 600)
(ev <- eep.fun(family, alpha, d=100)) # 96.135490 11.128448 1.060105
stopifnot(all(xlim[1] < ev, ev < xlim[2]))
pp100 <- sapply(my.polyG.meths, function(met) {
r <- plot.poly(family, xlim=xlim, ylim=ylim, method = met, alpha=alpha, d=100)
Sys.sleep(2)
r
}, simplify = FALSE)
## problems -- # NA's:
t(sapply(pp100, function(L) apply(L$f.x, 2, function(.) sum(!is.finite(.)))))
##-> only "default", "direct", and "dsSib.Rmpfr" have no NA's
## but what about the *values*?
### method == "pois"
plot.poly(family, xlim=xlim, ylim=ylim, method="pois", alpha=alpha, d=100)
## => problems for small and moderate alpha
## method == "pois.direct"
plot.poly(family, xlim=xlim, ylim=ylim, method="pois.direct", alpha=alpha, d=100)
## => problems for small and moderate alpha
## method == "stirling"
plot.poly(family, xlim=xlim, ylim=ylim, method="stirling", alpha=alpha, d=100)
## => problems only for large alphas
## method == "stirling.horner"
plot.poly(family, xlim=xlim, ylim=ylim, method="stirling.horner", alpha=alpha, d=100)
## => same as "stirling"
## other methods
plot.poly(family, xlim=xlim, ylim=ylim, method="sort", alpha=alpha, d=100) # log(< 0)
plot.poly(family, xlim=xlim, ylim=ylim, method="horner", alpha=alpha, d=100) # log(< 0)
plot.poly(family, xlim=xlim, ylim=ylim, method="direct", alpha=alpha, d=100) # log(< 0)
plot.poly(family, xlim=xlim, ylim=ylim, method="dsumSibuya", alpha=alpha, d=100) # okay for large alpha *only* ??
## this is *slow* and needs many "recall"s [and of course *looks* good]!
plot.poly(family, xlim=xlim, ylim=ylim, method="dsSib.Rmpfr", alpha=alpha, d=100)
### run time comparison of the methods that worked for some parameter
### ========
set.seed(1)
x <- runif(100000, min=0.01, max=120)
lx <- log(x)
## pois: for large alpha (where it works)
system.time(y.pois <- polyG(lx, alpha=0.99, d=100, method="pois", log=TRUE))
## => 8.91s
stopifnot(all(is.finite(y.pois))) # check
## pois.direct: for large alpha (where it works)
system.time(y.pois.d <- polyG(lx, alpha=0.99, d=100, method="pois.direct", log=TRUE))
## => 6.80s
stopifnot(all(is.finite(y.pois.d))) # check
## stirling: for moderate alpha (where it works)
system.time(y.stirl <- polyG(lx, alpha=0.5, d=100, method="stirling", log=TRUE))
## => 1.92s
stopifnot(all(is.finite(y.stirl))) # check
## stirling.horner: for moderate alpha (where it works)
system.time(y.stirl.Ho <- polyG(lx, alpha=0.5, d=100, method="stirling.horner",
log=TRUE))[[1]]
## => 2.79s
stopifnot(all(is.finite(y.stirl.Ho))) # check
## dsumSibuya: for large alpha (where it works)
system.time(y.dsSib.log <- polyG(lx, alpha=0.99, d=100, method="dsSib.log", log=TRUE))
## => 2.28s
stopifnot(all(is.finite(y.dsSib.log))) # check
## conclusion:
## - fastest for large alpha: "dsumSibuya", "pois.direct"
## - fastest for small and moderate alpha: "stirling"
## - further methods tried: pulling out max() for "stirling" => does not increase precision
### check default method
## comparison with Maple (Digits = 100)
v1 <- polyG(log(1), alpha=0.01, d=100, log=TRUE)
v2 <- polyG(log(1), alpha=0.5 , d=100, log=TRUE)
v3 <- polyG(log(1), alpha=0.99, d=100, log=TRUE)
M.v <- c(354.52779560, 356.56733266, 350.99662083)
stopifnot(all.equal(c(v1,v2,v3), M.v))
v1 <- polyG(log(17), alpha=0.01, d=100, log=TRUE)
v2 <- polyG(log(17), alpha=0.5 , d=100, log=TRUE)
v3 <- polyG(log(17), alpha=0.99, d=100, log=TRUE)
M.v <- c(358.15179523, 374.67231305, 370.20372192)
stopifnot(all.equal(c(v1,v2,v3), M.v))
M.v <- c(362.38428102, 422.83827969, 435.36899283)
v1 <- polyG(log(77), alpha=0.01, d=100, log=TRUE)
v2 <- polyG(log(77), alpha=0.5 , d=100, log=TRUE)
v3 <- polyG(log(77), alpha=0.99, d=100, log=TRUE)
stopifnot(all.equal(c(v1,v2,v3), M.v, tolerance=1e-6))
### more detailed graphical precision comparison in d = 100
## dsumSibuya
m <- 49
ylim <- c(200, 700)
polyG.ani.dsumSibuya <- poly.ani(family, m, d=100, method="dsumSibuya",
xlim=c(1e-16,200), ylim=ylim)
if(do.animation)
saveHTML(for(i in 1:m) print(polyG.ani.dsumSibuya[[i]]$plot),
outdir=file.path(tempdir(),"G_dsumSib"))
## => works for alpha >= 0.75
## pois.direct
polyG.ani.pois.direct <- poly.ani(family, m, d=100, method="pois.direct",
xlim=c(1e-16,200), ylim=ylim)
if(do.animation)
saveHTML(for(i in 1:m) print(polyG.ani.pois.direct[[i]]$plot),
outdir=file.path(tempdir(),"G_pois.direct"))
## => works for the whole range of *expected* values, esp. for alpha >= 0.72
## stirling
polyG.ani.stirling <- poly.ani(family, m, d=100, method="stirling",
xlim=c(1e-16,200), ylim=ylim)
if(do.animation)
saveHTML(for(i in 1:m) print(polyG.ani.stirling[[i]]$plot),
outdir=file.path(tempdir(),"G_stirling"))
## => works for alpha <= 0.56
## animation in alpha
polyG.ani.default <- poly.ani(family, m, d=100, method="default",
xlim=c(1e-16,200), ylim=ylim)
if(do.animation)
saveHTML(for(i in 1:m) print(polyG.ani.default[[i]]$plot),
outdir=file.path(tempdir(),"G_default"))
### Joe ########################################################################
## plots for small d ###########################################################
family <- "Joe"
polyJ <- copula:::polyJ
alpha <- c(0.05, 0.5, 0.99) # alphas; plot smallest first, so that all values are visible
xlim <- c(1e-16, 1e120)
ylim <- c(0, 1200)
set.seed(1)
(ev <- eep.fun(family, alpha, d=5, n.MC=100000))
## 5.618664e+79 6.923153e+03 5.912850e-02; varies a lot for different runs!
if(!all(xlim[1] < ev, ev < xlim[2])) warning("ev outside xlim")
Jmeths <- eval(formals(polyJ)$method)
Jpp5 <- sapply(Jmeths, function(met) {
r <- plot.poly(family, xlim=xlim, ylim=ylim, method = met, alpha=alpha, d=5)
Sys.sleep(2)
r
}, simplify = FALSE)
## => "poly" does not work for any reasonable x range -- others ok
t(sapply(Jpp5, function(L) apply(L$f.x, 2, function(.) sum(!is.finite(.)))))
## plots for large d ###########################################################
set.seed(1)
xlim <- c(1e-16, 1e120)
ylim <- c(0, 30000)
system.time(ev <- eep.fun(family, alpha, d=100, n.MC=100000))# longish:
## 15.5 sec (elapsed time)
ev
## 2.119430e+78 8.011466e+02 2.040599e-04; varies a lot for different runs!
if(!all(xlim[1] < ev, ev < xlim[2])) warning("ev outside xlim")
Jpp100 <- sapply(Jmeths, function(met) {
r <- plot.poly(family, xlim=xlim, ylim=ylim, method = met, alpha=alpha, d=100)
Sys.sleep(2)
r
}, simplify = FALSE)
## => "poly" does not work for any reasonable x range -- others ok
t(sapply(Jpp100, function(L) apply(L$f.x, 2, function(.) sum(!is.finite(.)))))
## i.e. same "message" for d=5 and d=100
### run time comparison of the methods that worked for some parameter ##########
### --------
set.seed(1)
x <- runif(100000, min=0.01, max=1e100)
lx <- log(x)
## log.poly:
system.time(y.log.poly <- polyJ(lx, alpha=0.5, d=100, method="log.poly",
log=TRUE))[[1]]
## => 2.701s
stopifnot(all(is.finite(y.log.poly))) # check
## log1p:
system.time(y.log1p <- polyJ(lx, alpha=0.5, d=100,
method="log1p", log=TRUE))[[1]]
## => 4.118s
stopifnot(all(is.finite(y.log1p))) # check
## conclusion: use log.poly as default
## comparison with Maple (Digits = 100)
v1 <- polyJ(log(1), alpha=0.01, d=100, log=TRUE)
v2 <- polyJ(log(1), alpha=0.5, d=100, log=TRUE)
v3 <- polyJ(log(1), alpha=0.99, d=100, log=TRUE)
M.v <- c(395.73694325, 393.08027226, 386.96715831)# Maple
stopifnot(all.equal(c(v1,v2,v3), M.v))
v1 <- polyJ(log(1e20), alpha=0.01, d=100, log=TRUE)
v2 <- polyJ(log(1e20), alpha=0.5, d=100, log=TRUE)
v3 <- polyJ(log(1e20), alpha=0.99, d=100, log=TRUE)
M.v <- c(4918.2008336, 4915.3815020, 4909.1039909)# Maple
stopifnot(all.equal(c(v1,v2,v3), M.v))
v1 <- polyJ(log(1e100), alpha=0.01, d=100, log=TRUE)
v2 <- polyJ(log(1e100), alpha=0.5, d=100, log=TRUE)
v3 <- polyJ(log(1e100), alpha=0.99, d=100, log=TRUE)
M.v <- c(23154.67477009, 23151.85543852, 23145.57792740)# Maple
stopifnot(all.equal(c(v1,v2,v3), M.v))
## animation in alpha
polyJ.ani.default <- poly.ani(family, m, d=100, method="log.poly",
xlim=c(1e-16,1e120), ylim=ylim)
if(do.animation)
saveHTML(for(i in 1:m) print(polyJ.ani.default[[i]]$plot),
outdir=file.path(tempdir(),"J_log.poly"))
## => rather extreme but seems to be fine
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.