Nothing
## Copyright (C) 2012 Marius Hofert, Ivan Kojadinovic, Martin Maechler, and Jun Yan
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
## FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
### (Nested) Archimedean Copulas -----------------------------------------------
require(copula)
if(!dev.interactive(orNone=TRUE)) pdf("copula-play.pdf")
### testing psi
myCop <- setTheta(copAMH, value = 0.5) # is maybe more natural
## Care: copula *does* define psi() already!
setGeneric("psi.", function(cop) standardGeneric("psi."))
setMethod(psi., "acopula",
function(cop) { function(t) cop@psi(t, theta = cop@theta) })
psi.(myCop) # is a function
psi.(myCop)(0:4)
curve(psi.(myCop)(x), 0, 4)
##' but this can also be done directly [ => same curve "on top" :]
curve(myCop@psi(x, theta = myCop@theta), 0, 4, col = 2, add = TRUE)
### testing Kendall's tau
p.Tau <- function(cop, n = 201, xlim = pmin(paraI, 50), ...) {
stopifnot(is(cop, "acopula"))
paraI <- cop@paraInterval
theta <- seq(xlim[1], xlim[2], length.out = n)
tit <- substitute(tau[NAME](theta), list(NAME = cop@name))
plot(theta, cop@tau(theta), type = "l", main = tit, ...)
abline(h = c(0,1), lty = 3, col = "gray20")
}
p.Tau(copAMH)
p.Tau(copClayton)
p.Tau(copFrank, xlim = c(0, 80), ylim= 0:1) # fast via debye_1()
p.Tau(copGumbel)
p.Tau(copJoe, ylim = 0:1, yaxs="i")
### test function ##############################################################
##' @title stopifnot() plus output
##' @param expr
##' @param prefix
##' @param true
##' @return
##' @author Martin Maechler
checkifnot <- function(expr, prefix = "check if", true = "[Ok]")
{
c0 <- function(...) cat(..., sep = "")
## match.call(): not "calling" expr too early:
c0(prefix, deparse(match.call()[[2]])[1],": ")
stopifnot(expr)
c0(true,"\n")
}
##' @title Perform a set of checks on a Archimedean copula object (with theta set)
##' @param cop acopula
##' @param theta1 parameter theta1
##' @param thetavec vector of parameters
##' @param i10 values where psi is evaluated
##' @param nRnd number of generated V0's and V01's
##' @param u01 values where psiinv is evaluated
##' @param lambdaLvec vector of lower tail-dependence coefficients
##' @param lambdaUvec vector of upper tail-dependence coefficients
##' @return list of measurements
##' @author Marius Hofert, Martin Maechler
tstCop <- function(cop, theta1 = cop@theta, thetavec = cop@theta, i10 = 1:10,
nRnd = 50, u01 = (1:63)/64, # exact binary fractions
lambdaLvec = NA_real_, lambdaUvec = NA_real_)
{
stopifnot(is(cop, "acopula"))
cat0 <- function(...) cat(..., "\n", sep = "")
theta0 <- cop@theta
CT <- list()
### (1) cop name
cat0(sprintf("(1) copula family: %10s, theta0 = %g",
cop@name, theta0))
### (2) generator
### (2.1) psi and iPsi
cat("\n(2) values of psi at i10:\n")
CT <- c(CT, list(psi = system.time(
p.i <- cop@psi(i10,theta = theta0))))
print(p.i)
checkifnot(identical(numeric(0), cop@iPsi(numeric(0), theta = theta0)))
checkifnot(cop@iPsi(0, theta = theta0) == Inf)
cat0("\nvalues of iPsi at u01:")
CT <- c(CT, list(psiI = system.time(
pi.t <- cop@iPsi(u01, theta = theta0))))
print(pi.t)
CT[["psiI"]] <- CT[["psiI"]] +
system.time(pi.pi <- cop@iPsi(p.i,theta = theta0))
CT[["psi" ]] <- CT[["psi" ]] +
system.time(p.pit <- cop@psi(pi.t, theta = theta0))
cat0("check if iPsi(psi(i10))==i10: ", all.equal(pi.pi, i10))
cat0("check if psi(iPsi(u01))==u01: ", all.equal(p.pit, u01))
### (2.2) absdPsi
## absdPsi with degree = 10
cat0("\nvalues of absdPsi with degree=10 at i10:")
CT <- c(CT, list(absdPsi = system.time(
p.D <- cop@absdPsi(i10,theta = theta0, degree = 10))))
print(p.D)
cat0("check if all values are nonnegative")
stopifnot(is.vector(p.D), all(p.D >= 0))
cat("check absdPsi(Inf,theta,degree=10) = 0 and the class of absdPsi(0,theta,degree=10): ")
at.0 <- cop@absdPsi(0, theta = theta0, degree = 10)
stopifnot(cop@absdPsi(Inf, theta = theta0, degree = 10) == 0,
is.numeric(at.0), !is.nan(at.0))
cat0("[Ok]")
## absdPsi with degree = 10 and MC
cat("\nvalues of absdPsi with degree=10 and MC at i10:\n")
CT <- c(CT, list(absdPsi = system.time(
p.D <- cop@absdPsi(i10,theta = theta0, degree = 10, n.MC = 1000))))
print(p.D)
cat0("check if all values are nonnegative")
stopifnot(all(p.D >= 0))
cat("check absdPsi(Inf,theta,degree=10,n.MC=1000) = 0 and the class of absdPsi(0,theta,degree=10,n.MC=1000): ")
at.0 <- cop@absdPsi(0, theta = theta0, degree = 10, n.MC = 1000)
stopifnot(cop@absdPsi(Inf, theta = theta0, degree = 10, n.MC = 1000)==0,
is.numeric(at.0), !is.nan(at.0))
cat0("[Ok]")
### (2.3) absdiPsi
cat0("\nvalues of absdiPsi at u01:")
CT <- c(CT, list(absdiPsi. = system.time(
absdiPsi. <- cop@absdiPsi(u01, theta = theta0))))
print(absdiPsi.)
stopifnot(all(absdiPsi. >= 0, is.numeric(absdiPsi.), !is.nan(absdiPsi.)))
cat("check the class of absdiPsi(0,theta): ")
at.0 <- cop@absdiPsi(0, theta = theta0)
stopifnot(is.numeric(at.0),!is.nan(at.0))
cat0("[Ok]")
### (3) parameter interval
cat("\n(3) parameter interval:\n")
print(cop@paraInterval)
cat0("theta1=",theta1)
cat0("nesting condition for theta0 and theta1 fulfilled: ",
cop@nestConstr(theta0,theta1))
### (4) V0, dV0, V01, dV01
## V0
CT <- c(CT, list(V0 = system.time(V0 <- cop@V0(nRnd,theta0))))
cat0("\n(4) ",nRnd," generated V0's:")
print(summary(V0))
## dV0
cat("\nvalues of dV0 at i10:\n")
CT <- c(CT, list(dV0 = system.time(dV0.i <- cop@dV0(i10,theta0))))
print(dV0.i)
## V01
CT <- c(CT, list(V01 = system.time(V01 <- cop@V01(V0,theta0,theta1))))
cat0("\n",nRnd," generated V01's:")
print(summary(V01))
nt <- length(thetavec)
## dV01
cat("\nvalues of dV01 at i10:\n")
CT <- c(CT, list(dV01 = system.time(
dV01.i <- cop@dV01(i10,V0=1,theta0=theta0, theta1=theta1))))
print(dV01.i)
### (5) cCopula {was "cacopula"}
cat("\n(5) values of cCopula(cbind(v,rev(v)), copula = cop) for v=u01:\n")
cop. <- onacopulaL(cop@name, list(theta0, 1:2))
CT <- c(CT, list(cCopula. = system.time(
cac <- cCopula(cbind(u01, rev(u01)), copula = cop., indices = 2))))
stopifnot(identical(dim(cac), c(length(u01),1L)), 0 <= cac, cac <= 1)
print(c(cac))
### (6) dCopula (log = TRUE) {was dnacopula()}
u <- matrix(runif(400),ncol=20)
ocop.2d <- onacopulaL(cop@name,list(theta0,1:2))
ocop.20d <- onacopulaL(cop@name,list(theta0,1:20))
## d = 2
cat("\n(6) check dCopula(*, log = TRUE) for u being a random (20x2)-matrix:\n")
CT <- c(CT, list(dCopula. =
system.time(lD <- dCopula(u[,1:2], ocop.2d, log = TRUE))))
print(lD); stopifnot(is.numeric(lD), is.finite(lD)); cat0("[Ok]")
cat("check at (0,0.5) and (1,0.5):\n")
stopifnot(dCopula(cbind(0:1,0.5), ocop.2d, log = FALSE) == 0,
dCopula(cbind(0:1,0.5), ocop.2d, log = TRUE ) == -Inf)
cat0("[Ok]")
## d = 20, n.MC = 0
cat("\n check dCopula(*, log = TRUE) for u being a random (20x20)-matrix:\n")
CT <- c(CT, list(dCopula. =
system.time(lD. <- dCopula(u, ocop.20d, log = TRUE))))
print(lD.); stopifnot(is.numeric(lD.), is.finite(lD.)); cat0("[Ok]")
## d = 20, n.MC > 0
cat("\n check dCopula(*, log = TRUE) and MC for u being a random (20x20)-matrix:\n")
CT <- c(CT, list(dCopula. =
system.time(lD.. <- dCopula(u, ocop.20d, n.MC = 1000, log = TRUE))))
print(lD..); stopifnot(is.numeric(lD..), is.finite(lD..)); cat0("[Ok]")
## d = 20, check if n.MC > 0 is close to n.MC = 0
stopifnot(all.equal(lD., lD.., tolerance=0.5))
### (7) K
check.K.u01 <- function(K){
d.K <- diff(K)
if(any(neg <- d.K < 0)){ # happens for AMH, Clayton, and Frank (near 1)
if(any(Neg <- abs(d.K[neg]) > 1e-15* abs(K[-1][neg]))) {
warning("K(.) is 'substantially' non-monotone for K() / diff(K) =",
immediate.=TRUE)
print(cbind(K = K[-1][Neg], diff.K = d.K[Neg]))
}
}
stopifnot(is.numeric(K), length(K) == length(u01), 0 <= K, K <= 1)
}
## K for d = 2
cat("\n(7) values of K for d = 2 at u01:\n")
CT <- c(CT, list(K = system.time(K. <- pK(u01, cop, d = 2))))
check.K.u01( print(K.) )
cat("check if K(0) = 0 and K(1) = 1: ")
stopifnot(pK(0, cop, d = 2)==0,
pK(1, cop, d = 2)==1)
cat0("[Ok]")
## K for d = 10
cat("\nvalues of K for d = 10 at u01:\n")
CT <- c(CT, list(K = system.time(K. <- pK(u01, cop, d = 10))))
check.K.u01( print(K.) )
cat("check if K(0) = 0 and K(1) = 1: ")
stopifnot(pK(0, cop, d = 10)==0,
pK(1, cop, d = 10)==1)
cat0("[Ok]")
## K for d = 10 and MC
cat("\nvalues of K for d = 10 and MC at u01:\n")
CT <- c(CT, list(K = system.time(K. <- pK(u01, cop, d = 10, n.MC = 1000))))
check.K.u01( print(K.) )
cat("check if K(0)=0 and K(1)=1: ")
stopifnot(pK(0, cop, d = 10, n.MC = 1000)==0,
pK(1, cop, d = 10, n.MC = 1000)==1)
cat0("[Ok]")
### (8) tau, iTau
cat("\n(8) tau at thetavec:\n")
CT <- c(CT, list(tau = system.time(ta <- cop@tau(thetavec))))
print(ta)
CT <- c(CT, list(tauI = system.time(ta.I <- cop@iTau(ta))))
cat0("check if iTau(tau(thetavec))==thetavec: ",
all.equal(ta.I, thetavec))
lambdaLvec <- rep(as.double(lambdaLvec), length.out= nt)
lambdaUvec <- rep(as.double(lambdaUvec), length.out= nt)
### (9) lambdaL, lambdaLInv
cat("\n(9) lambdaL at thetavec:\n")
CT <- c(CT, list(lambdaL = system.time(lT <- cop@lambdaL(thetavec))))
CT <- c(CT, list(lT.I = system.time(lT.I <- cop@lambdaLInv(lT))))
print(lT)
cat0("check if lambdaLInv(lambdaL(thetavec))==lambdaLvec: ",
all.equal(lT.I, lambdaLvec))
### (10) lambdaU, lambdaUInv
cat("\n(10) lambdaU at thetavec:\n")
CT <- c(CT, list(lambdaU = system.time(uT <- cop@lambdaU(thetavec))))
CT <- c(CT, list(uT.I = system.time(uT.I <- cop@lambdaUInv(uT))))
print(uT)
cat0("check if lambdaUInv(lambdaU(thetavec))==lambdaUvec: ",
all.equal(uT.I, lambdaUvec))
### (11) dDiag
cat("\n(11) dDiag at u01 for d=10:\n")
CT <- c(CT, list(dDiag = system.time(
dDiag. <- cop@dDiag(u01, theta=theta0, d=10))))
print(dDiag.)
stopifnot(is.numeric(dDiag.), all(dDiag. > 0))
cat0("[Ok]")
class(CT) <- "proc_time_list"
CT
}
##' print() method for the tstCop() results
print.proc_time_list <- function (x, ...) {
stopifnot(is.list(x), !is.null(nx <- names(x)))
cat("proc.time()s: user system elapsed\n")
## 2 4 6 8 0 2 4 6 8 0 2 4 6 89|1 3 |1 3 56|1 3 5 7
## 1 2 2
for(nm in nx)
if(!all(x[[nm]] == 0, na.rm=TRUE)) {
## use 'Time ..' as that works with 'R CMD Rdiff'
m <- 1000*x[[nm]]
cat(sprintf("Time [ms] for %13s :%5.0f %6.0f %7.0f\n",
## 2 4 6 8 0 2 4 6 8 0| (20 + (13-4)) = 29
nm, m[1], m[2], m[3]))
## cat(nm,":\n"); print(x[[nm]], ...)
}
invisible(x)
}
### copAMH #####################################################################
myAMH <- setTheta(copAMH, 0.7135001)
thetavec <- c(0.1,0.3,0.5,0.7,0.9)
set.seed(1)
tstCop(myAMH, 0.9429679, thetavec = thetavec)
### copClayton #################################################################
myClayton <- setTheta(copClayton, 0.5)
thetavec <- c(0.5,1,2,5,10)
tstCop(myClayton, 2, thetavec, lambdaL = thetavec, lambdaU = NA)
### copFrank ###################################################################
myFrank <- setTheta(copFrank, 1.860884)
thetavec <- c(0.5,1,2,5,10)
set.seed(11)
tstCop(myFrank, 5.736283, thetavec)
## with a slightly more extensive test:
tau.th <- c(0.055417, 0.11002, 0.21389, 0.4567, 0.66578)
tau.F <- myFrank@tau(thetavec)
stopifnot(all.equal(tau.th, tau.F, tolerance = 0.0001),
all.equal(.9999, copFrank@tau(copFrank@iTau(0.9999))),
all.equal(myFrank@iTau(tau.F, tol = 1e-14), thetavec, tolerance=1e-11))
### copGumbel ##################################################################
myGumbel <- setTheta(copGumbel, 1.25)
thetavec <- c(1,2,4,6,10)
(tG <- tstCop(myGumbel,2, thetavec, lambdaL = NA, lambdaU = thetavec))
u <- seq(0,1, length=32 + 1)[-c(1,32+1)]
u <- as.matrix(expand.grid(u,u))
myGumbel@dacopula(u, theta=1.25)
### copJoe #####################################################################
myJoe <- setTheta(copJoe, 1.25)
thetavec <- c(1.1,2,4,6,10)
set.seed(111)
tstCop(myJoe, 2, thetavec, lambdaL = NA, lambdaU = thetavec)
### Regression tests ------------------------------------
chkPsi <- function(copula, t = c(0, 2^c(-1000,-500, -200,-10*(10:0)), 2:3, 2^(2:40),Inf)) {
stopifnot(is(copula, "Copula"))
if(is.unsorted(t)) t <- sort(t)
psf <- psi(copula, t)
## and also an equidistant t --> to check convexity
ps.eq <- psi(copula, t. <- seq(0, 20, length=1+2^7))
stopifnot(is.finite(psf), 0 <= psf, psf <= 1,
psf[1] == 1, diff(psf) <= 0,
is.na (pN <- psi(copula, c(NA, NaN))),
is.nan(pN[2]),
0 <= ps.eq, ps.eq <= 1, diff(ps.eq) <= 0,
## convexity (in light of finite accuracy arithmetic):
diff(ps.eq, diff=2) >= - 4*.Machine$double.eps *ps.eq[-(1:2)]
)
## for plotting:
it <- sort.list(tt <- c(t,t.))
invisible(list(x=tt[it], y= c(psf, ps.eq)[it]))
}
### Negative tau (and dim = 2):
taus <- c(-1,0,1); names(taus) <- paste0("tau=",taus)
taus
## Frank: --------------------------------------------------------
vapply(taus, function(tau) iTau(frankCopula(), tau), 1.)
## tau=-1 tau=0 tau=1
## -1.81e+16 0.00e+00 7.21e+16
## ~= - Inf 0 + Inf
r <- chkPsi(frankCopula(-2))
plot(r, type="o")
plot(r, type="o", log="xy")
chkPsi(frankCopula( -800))# failed before 2014-06
chkPsi(frankCopula(-2000))# (ditto)
chkPsi(frankCopula(-1e10))# (ditto)
## Clayton: ------------------------------------------------------
vapply(taus, function(tau) iTau(claytonCopula(), tau), 1.)
## tau=-1 tau=0 tau=1
## -1 0 Inf
stopifnot(all.equal(-2/3, iTau(claytonCopula(), -1/2)))
tools::assertError(chkPsi(claytonCopula(-1.1))) # par. out of bound
chkPsi(claytonCopula(-1)) ## all failed before 2014-05
chkPsi(claytonCopula(-.5))
chkPsi(claytonCopula(-1/8))
chkPsi(claytonCopula(-2^-10))
## AMH:
tAMH <- c((5 - 8*log(2))/ 3, -1/8, 0, 1/8, 1/3)
(th.t <- vapply(tAMH, function(tau) iTau(amhCopula(), tau), 1.))
stopifnot(-1 <= th.t, th.t <= 1,
all.equal(th.t[c(1,3,5)], c(-1,0,1)))
## rho: --> ../vignettes/rhoAMH-dilog.Rnw
## cCopula() for all three "negative" tau families:
## -------- --------------
cCneg <- function(tau, u1 = (1:8)/8) {
stopifnot(length(tau) == 1, is.finite(tau), -1 <= tau, tau <= 1)
u <- cbind(u1, .5)
rbind(A = cCopula(u, amhCopula(iTau( amhCopula(), tau)))[,2],
C = cCopula(u, claytonCopula(iTau(claytonCopula(), tau)))[,2],
F = cCopula(u, frankCopula(iTau( frankCopula(), tau)))[,2])
}
## AMH and Frank "failed" because cop(AMH|Frank) @ absdPsi(*, log=TRUE) gave NaN
(cACF <- cCneg(tau = -0.18))
stopifnot(is.finite(cACF), !apply(cACF, 1, is.unsorted),
0.348 <= cACF, cACF <= 0.748,
## *are* somewhat similar as they have same tau:
all.equal(cACF["A",], cACF["F",], tol = 0.035)
,
all.equal(cACF["C",], cACF["F",], tol = 0.079)
)
## FIXME: u1 = 0 still gives NaN, and for Clayton even others
u1. <- c(0, 1e-100, 1e-20, 1e-10, 1e-5, 1e-4, 1e-3, .01)
cCneg(-0.18, u1 = u1.)
###---- Large Tau Random Numbers -------------------------------------
taus <- c(.80, .85, .90, .95, .98, .99, .993, .995, .996, .997, .998, .999)
namT <- paste0("tau=", formatC(taus))
archCops <- list(C = claytonCopula,
F = frankCopula,
G = gumbelCopula,
## A = amhCopula, ## max tau = 1/3 = 0.33333
J = joeCopula)
thC <- lapply(archCops, function(Cop) setNames(iTau(Cop(), taus), namT))
simplify2array(thC)
Cops <- lapply(names(thC), function(nm) lapply(thC[[nm]], function(th) archCops[[nm]](th, dim=3)))
uC <- lapply(setNames(,names(thC)), function(nm)
lapply(thC[[nm]], function(th) rCopula(n = 100, archCops[[nm]](th, dim=3))))
(aU <- simplify2array(uC))
mima <- t(sapply(aU, range))
stopifnot(!vapply(aU, anyNA, NA), # no NA's
0 <= mima[,1], mima[,1] <= mima[,2], mima[,2] <= 1)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.