R/cor_bakers_gamma.R

Defines functions cor_bakers_gamma.dendlist cor_bakers_gamma.hclust cor_bakers_gamma.dendrogram cor_bakers_gamma.default cor_bakers_gamma bakers_gamma_for_2_k_matrix lowest_common_branch

Documented in bakers_gamma_for_2_k_matrix cor_bakers_gamma cor_bakers_gamma.default cor_bakers_gamma.dendlist cor_bakers_gamma.dendrogram cor_bakers_gamma.hclust lowest_common_branch

# Copyright (C) Tal Galili
#
# This file is part of dendextend.
#
# dendextend is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# dendextend is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
#  A copy of the GNU General Public License is available at
#  http://www.r-project.org/Licenses/
#



#' @title Find lowest common branch were the two items are shared
#' @export
#' @description
#' Given two vectors, for two items, of cluster belonging - the function finds
#' the lowest branch (e.g: largest number of k clusters) for which the two
#' items are in the same cluster for the two trees.
#' @param item1 a named numeric vector (of cluster group with names of k level)
#' @param item2 a named numeric vector (of cluster group with names of k level)
#' @param ... not used
#' @seealso
#' \link{cor_bakers_gamma}
#' @return
#' The first location (from left) where the two vectors have the same A dendrogram, after adjusting the members attr in all of its nodes.
#' @examples
#'
#' item1 <- structure(c(1L, 1L, 1L, 1L), .Names = c("1", "2", "3", "4"))
#' item2 <- structure(c(1L, 1L, 2L, 2L), .Names = c("1", "2", "3", "4"))
#' lowest_common_branch(item1, item2)
lowest_common_branch <- function(item1, item2, ...) {
  # for two rows of cluster belonging,
  # this finds all the cases where the two items are identical (e.g: belong to the same branch)
  # Then it takes the most extreme value (lowest branch) where this happens
  # and finally - it extracts the level of that lowest brnach (names) and turn it to be numeric
  value <- as.numeric(names(tail(which(item1 == item2), 1)))
  if (length(value) == 0) value <- 0
  return(value)
}


#' @title Bakers Gamma for two k matrices
#' @description Bakers Gamma for two k matrices
#' @param k_matrix_dend1 a matrix of k cluster groupings from a dendrogram
#' @param k_matrix_dend2 a (second) matrix of k cluster groupings from a dendrogram
#' @param to_plot logical (FALSE). Should a scaterplot be plotted, showing the
#' correlation between the lowest shared branch between two items in the two
#' compared trees.
#' @param ... not used
#' @seealso
#' \link{cor_bakers_gamma}
#' @return
#' Baker's Gamma coefficient.
bakers_gamma_for_2_k_matrix <- function(k_matrix_dend1, k_matrix_dend2, to_plot = FALSE, ...) {
  if (dim(k_matrix_dend1)[1] != dim(k_matrix_dend2)[1]) stop("The k_matrixes seems to show a different number of items - we can not compare trees in this case!")
  if (!all(sort(rownames(k_matrix_dend1)) == sort(rownames(k_matrix_dend2)))) { # we are using "sort" since the rownames may be of different order - depending on the way the two trees were constructed.
    print(paste("Item names (rownames) of k_matrix_dend1:", rownames(k_matrix_dend1)))
    print(paste("Item names (rownames) of k_matrix_dend2:", rownames(k_matrix_dend2)))
    stop("The k_matrixes seems to have different item names - \n we can not compare trees in this case! \n Consider using use_labels_not_values = T (or F) in cutree")
  }

  all_combinations_of_items <- t(combn(seq_len(dim(k_matrix_dend1)[1]), 2))
  number_of_combinations_of_items <- dim(all_combinations_of_items)[1]


  cor_mat <- matrix(0, number_of_combinations_of_items, 2)


  for (i in seq_len(number_of_combinations_of_items))
  {
    item_id_1_name <- rownames(k_matrix_dend1)[all_combinations_of_items[i, 1]]
    item_id_2_name <- rownames(k_matrix_dend1)[all_combinations_of_items[i, 2]]
    # The names must be identical in both trees - we've made a stopping rule for that already.
    item1 <- k_matrix_dend1[item_id_1_name, ]
    item2 <- k_matrix_dend1[item_id_2_name, ]
    # print(paste(i, item1, item2))
    cor_mat[i, 1] <- lowest_common_branch(item1, item2)

    item1 <- k_matrix_dend2[item_id_1_name, ]
    item2 <- k_matrix_dend2[item_id_2_name, ]
    cor_mat[i, 2] <- lowest_common_branch(item1, item2)
  }

  COR_object <- cor(cor_mat[, 1], cor_mat[, 2], method = "spearman")
  if (is.na(COR_object)) COR_object <- 1 # because this is NA only if the two vectors are identical
  #  that happens only when the two trees have only leaves. Which is o.k. to define as correlation of 1.

  if (to_plot) {
    plot(cor_mat, sub = paste("COR =", round(COR_object, 4)))
  }

  return(COR_object)
}








#' @title Baker's Gamma correlation coefficient
#' @name cor_bakers_gamma
#' @export
#' @aliases
#' cor_bakers_gamma.dendrogram
#' cor_bakers_gamma.hclust
#' cor_bakers_gamma.dendlist
#'
#'
#' @description
#' Calculate Baker's Gamma correlation coefficient for two trees
#' (also known as Goodman-Kruskal-gamma index).
#'
#' Assumes the labels in the two trees fully match. If they do not
#' please first use \link{intersect_trees} to have them matched.
#'
#' WARNING: this can be quite slow for medium/large trees.
#'
#' @param dend1 a tree (dendrogram/hclust/phylo)
#' @param dend2 a tree (dendrogram/hclust/phylo)
#' @param use_labels_not_values logical (TRUE). Should labels be used in the
#' k matrix when using cutree? Set to FALSE will make the function a bit faster
#' BUT, it assumes the two trees have the exact same leaves order values for
#' each labels. This can be assured by using \link{match_order_by_labels}.
#' @param to_plot logical (FALSE). Passed to \link{bakers_gamma_for_2_k_matrix}
#' @param warn logical (default from dendextend_options("warn") is FALSE).
#' Set if warning are to be issued, it is safer to keep this at TRUE,
#' but for keeping the noise down, the default is FALSE.
#' should a warning be issued when using \link[dendextend]{cutree}?
#' @param ... Passed to \link[dendextend]{cutree}.
#' @param which an integer vector of length 2, indicating
#' which of the trees in the dendlist object should be plotted (relevant for dendlist)
#'
#' @details
#' Baker's Gamma (see reference) is a measure of accosiation (similarity)
#' between two trees of heirarchical clustering (dendrograms).
#'
#' It is calculated by taking two items, and see what is the heighst
#' possible level of k (number of cluster groups created when cutting the tree)
#' for which the two item still belongs to the same tree. That k is returned,
#' and the same is done for these two items for the second tree.
#' There are n over 2 combinations of such pairs of items from the items in
#' the tree, and all of these numbers are calculated for each of the two trees.
#' Then, these two sets of numbers (a set for the items in each tree)
#' are paired according to the pairs of items compared, and a spearman
#' correlation is calculated.
#'
#' The value can range between -1 to 1. With near 0 values meaning that
#' the two trees are not statistically similar.
#' For exact p-value one should result to a permutation test. One such option
#' will be to permute over the labels of one tree many times, and calculating
#' the distriubtion under the null hypothesis (keeping the trees topologies
#' constant).
#'
#' Notice that this measure is not affected by the height of a branch but only
#' of its relative position compared with other branches.
#'
#' @seealso
#' \link{cor_cophenetic}
#' @return
#' Baker's Gamma association Index between two trees (a number between -1 to 1)
#'
#' @references
#'
#' Baker, F. B., Stability of Two Hierarchical Grouping Techniques Case
#'  1: Sensitivity to Data Errors. Journal of the American Statistical
#'  Association, 69(346), 440 (1974).
#'
#' @examples
#'
#' \dontrun{
#'
#' set.seed(23235)
#' ss <- sample(1:150, 10)
#' hc1 <- hclust(dist(iris[ss, -5]), "com")
#' hc2 <- hclust(dist(iris[ss, -5]), "single")
#' dend1 <- as.dendrogram(hc1)
#' dend2 <- as.dendrogram(hc2)
#' #    cutree(dend1)
#'
#' cor_bakers_gamma(hc1, hc2)
#' cor_bakers_gamma(dend1, dend2)
#'
#' dend1 <- match_order_by_labels(dend1, dend2) # if you are not sure
#' cor_bakers_gamma(dend1, dend2, use_labels_not_values = FALSE)
#'
#' library(microbenchmark)
#' microbenchmark(
#'   with_labels = cor_bakers_gamma(dend1, dend2, try_cutree_hclust = FALSE),
#'   with_values = cor_bakers_gamma(dend1, dend2,
#'     use_labels_not_values = FALSE, try_cutree_hclust = FALSE
#'   ),
#'   times = 10
#' )
#'
#'
#' cor_bakers_gamma(dend1, dend1, use_labels_not_values = FALSE)
#' cor_bakers_gamma(dend1, dend1, use_labels_not_values = TRUE)
#' }
#'
cor_bakers_gamma <- function(dend1, ...) {
  UseMethod("cor_bakers_gamma")
}


#' @export
#' @rdname cor_bakers_gamma
cor_bakers_gamma.default <- function(dend1, dend2, ...) {
  dend1 <- as.dendrogram(dend1)
  dend2 <- as.dendrogram(dend2)
  cor_bakers_gamma(dend1, dend2, ...)
}

#' @export
#' @rdname cor_bakers_gamma
cor_bakers_gamma.dendrogram <- function(dend1, dend2, use_labels_not_values = TRUE, to_plot = FALSE, warn = dendextend_options("warn"), ...) {
  k_matrix_dend1 <- cutree(dend1, k = 1:nleaves(dend1), use_labels_not_values = use_labels_not_values, warn = warn, ...)
  k_matrix_dend2 <- cutree(dend2, k = 1:nleaves(dend2), use_labels_not_values = use_labels_not_values, warn = warn, ...)
  bakers_gamma <- bakers_gamma_for_2_k_matrix(k_matrix_dend1, k_matrix_dend2, to_plot = to_plot)
  return(bakers_gamma)
}


#' @export
#' @rdname cor_bakers_gamma
cor_bakers_gamma.hclust <- function(dend1, dend2, use_labels_not_values = TRUE, to_plot = FALSE, warn = dendextend_options("warn"), ...) {
  k_matrix_dend1 <- cutree(dend1, k = 1:nleaves(dend1), use_labels_not_values = use_labels_not_values, warn = warn, ...)
  k_matrix_dend2 <- cutree(dend2, k = 1:nleaves(dend2), use_labels_not_values = use_labels_not_values, warn = warn, ...)
  bakers_gamma <- bakers_gamma_for_2_k_matrix(k_matrix_dend1, k_matrix_dend2, to_plot = to_plot)
  return(bakers_gamma)
}



#' @export
#' @rdname cor_bakers_gamma
cor_bakers_gamma.dendlist <- function(dend1, which = c(1L, 2L), ...) {
  cor_bakers_gamma(dend1[[which[1]]], dend1[[which[2]]], ...)
}



# k_matrix_dend1 <- cutree(hc1, k = 1:nleaves(hc1))
# k_matrix_dend2 <- cutree(hc2, k = 1:nleaves(hc1))
# library(compiler)
# enableJIT(3)
# system.time(bakers_gamma_for_2_k_matrix(k_matrix_dend1, k_matrix_dend2))
# before: 2.37
# after: 1.97

Try the dendextend package in your browser

Any scripts or data that you put into this service are public.

dendextend documentation built on Oct. 13, 2024, 1:06 a.m.