Nothing
# $Id: perm.test.R,v 1.17.4.2 2005/06/02 06:42:59 hothorn Exp $
perm.test <- function(x, ...) UseMethod("perm.test")
perm.test.default <-
function(x,y=NULL, paired = FALSE, alternative = c("two.sided", "less", "greater"),
mu = 0, exact=NULL, conf.int = FALSE, conf.level = 0.95, tol=NULL, ...) {
if (is.null(x)) stop("x is missing")
if (is.null(y)) paired <- TRUE
alternative <- match.arg(alternative)
if(!missing(mu) && ((length(mu) > 1) || !is.finite(mu)))
stop("mu must be a single number")
if(conf.int) {
if(!((length(conf.level) == 1)
&& is.finite(conf.level)
&& (conf.level < 1)))
stop("conf.level must be a single number between 0 and 1")
}
if(!is.numeric(x)) stop("`x' must be numeric")
MIDP <- NULL
if (!is.null(y)) {
if(!is.numeric(y)) stop("`y' must be numeric")
DNAME <- paste(deparse(substitute(x)), "and",
deparse(substitute(y)))
} else DNAME <- deparse(substitute(x))
if (paired) {
if (!is.null(y)) {
OK <- complete.cases(x, y)
x <- x[OK] - y[OK]
} else {
x <- x[complete.cases(x)]
}
x <- x - mu
m <- length(x)
METHOD <- "1-sample Permutation Test"
if (is.null(exact)) exact <- (m <= 50)
if (any(x != floor(x)) && exact) {
if (is.null(tol)) {
sc <- (-sum(x <= 0)):sum(x > 0)
x <- sc[rank(x, ties.method = "first")]
METHOD <- paste(METHOD, "(scores mapped into 1:m")
}
METHOD <- paste(METHOD, "using rounded scores)")
}
STATISTIC <- sum(x[x > 0])
if (exact) {
PVAL <- switch(alternative,
"two.sided" = {
pperm(STATISTIC, abs(x), m, alternative="two.sided",
pprob=TRUE, tol=tol, paired = TRUE)
}, "greater" = {
pperm(STATISTIC, abs(x), m, alternative="greater",
pprob=TRUE, tol=tol, paired = TRUE)
}, "less" = {
pperm(STATISTIC, abs(x), m, alternative="less", pprob=TRUE,
tol=tol, paired = TRUE)
})
MIDP <- PVAL$PPROB
PVAL <- PVAL$PVALUE
} else {
METHOD <- paste("Asymptotic", METHOD)
wmean <- sum(abs(x))/2
wvar <- sum(abs(x)^2)/4
PVAL <- pnorm((STATISTIC - wmean) / sqrt(wvar))
if (alternative == "greater")
PVAL <- 1 - PVAL
if(alternative == "two.sided")
PVAL <- 2 * min(PVAL, 1-PVAL)
if (conf.int) {
conf.int <- FALSE
warning("cannot compute asymptotic confidence intervals")
}
}
if (conf.int) {
warning("Cannot compute confidence interval for paired data!")
# I do not find any related reference, can R"ohmel 96 be adapted?
if (FALSE)
alpha <- 1-conf.level
xscores <- equiscores(x,m)
Hx <- rep(0, sum(xscores$scores)*m)
dummy <- rep(1,m)
Hx <- .Call(cpermdist2, as.integer(m),
as.integer(sum(xscores$scores)), as.integer(dummy),
as.integer(xscores$scores),
as.logical(FALSE))
Hx <- matrix(Hx, nrow=m, byrow=TRUE)
Hx <- rbind(Hx, 0)
Hx[nrow(Hx), ncol(Hx)] <- 1
D <- c()
for (i in 1:m) {
xmean <- which(Hx[i+1,] > 0) - 1
xm <- length(xmean)
xmeans <- ((xmean + xscores$add*i)/xscores$fact)/i
diff <- outer(xmeans, xmeans, "+")
diff <- sort(diff[!lower.tri(diff)]) / 2
count <- as.vector(outer(Hx[i+1, xmean+1], Hx[i+1, xmean+1], "*"))
od <- order(diff)
count <- count[od]
diff <- diff[od]
du <- duplicated(diff)
for (k in length(count):1) {
if (du[k]) count[k-1] <- count[k-1] + count[k]
}
diff <- unique(diff)
count <- count[!du]
old <- diff %in% D[,1]
Dold <- D[,1] %in% diff
if (any(Dold))
D[Dold,2] <- D[Dold,2] + count[old]
if (any(!old))
D <- rbind(D, cbind(diff[!old], count[!old]))
D <- D[order(D[,1]),]
}
od <- order(D[,1])
Dcount <- cumsum(D[od,2])
Dsort <- D[od,1]
L <- sum(D[,2])
cint <- switch(alternative,
"two.sided" = {
qu <- floor((1-alpha/2)*L)
qu <- which(abs(Dcount - qu) == min(abs(Dcount - qu)))
ql <- ceiling(alpha/2*L)
ql <- which(abs(Dcount - ql) == min(abs(Dcount - ql)))
c(Dsort[ql], Dsort[qu])
}, "greater" = {
qu <- floor((1-alpha)*L)
qu <- which(abs(Dcount - qu) == min(abs(Dcount - qu)))
c(-Inf, Dsort[qu])
}, "less" = {
ql <- ceiling(alpha*L)
ql <- which(abs(Dcount - ql) == min(abs(Dcount - ql)))
c(Dsort[ql], Inf)
})
attr(cint, "conf.level") <- conf.level
}
# }
} else {
x <- x[complete.cases(x)]
y <- y[complete.cases(y)]
m <- length(x)
n <- length(y)
if(n < m & conf.int) {
warning("x has more observations than y, returning perm.test(y, x, ...)")
return(perm.test(y, x, paired, alternative,
mu, exact, conf.int, conf.level, tol=NULL,...))
}
x <- x - mu
if (is.null(exact)) exact <- (m <= 50 && n <= 50)
cxy <- c(x,y)
METHOD <- "2-sample Permutation Test"
if (any(cxy != floor(cxy)) && exact) {
if (is.null(tol)) {
cxy <- cxy - min(cxy)
cxy <- round(cxy*(n+m)/max(cxy))
METHOD <- paste(METHOD, "(scores mapped into 1:(m+n)")
x <- cxy[seq(along=x)]
y <- cxy[-seq(along=x)]
}
METHOD <- paste(METHOD, "using rounded scores)")
}
STATISTIC <- sum(x)
if (exact) {
PVAL <- switch(alternative,
"two.sided" = {
pperm(STATISTIC, c(x,y), m, alternative="two.sided",
pprob=TRUE, tol=tol)
}, "greater" = {
pperm(STATISTIC, c(x,y), m, alternative="greater",
pprob=TRUE, tol=tol)
}, "less" = {
pperm(STATISTIC, c(x,y), m, alternative="less", pprob=TRUE,
tol=tol)
})
MIDP <- PVAL$PPROB
PVAL <- PVAL$PVALUE
} else {
METHOD <- paste("Asymptotic", METHOD)
N <- m + n
wmean <- m/N*sum(c(x,y))
wvar <- m*n/(N*(N-1))*sum((c(x,y) - wmean/m)^2)
PVAL <- pnorm((STATISTIC - wmean)/sqrt(wvar))
if (alternative == "greater")
PVAL <- 1 - PVAL
if(alternative == "two.sided")
PVAL <- 2 * min(PVAL, 1 - PVAL)
if (conf.int) {
conf.int <- FALSE
warning("cannot compute asymptotic confidence intervals")
}
}
if (conf.int) {
alpha <- 1-conf.level
xscores <- equiscores(x,m)
yscores <- equiscores(y,n)
tsx <- sum(xscores$scores)
tsy <- sum(yscores$scores)
dummy <- rep(1,m)
Hx <- .Call(cpermdist2, as.integer(m),
as.integer(tsx), as.integer(dummy),
as.integer(xscores$scores),
as.logical(FALSE))
Hx <- matrix(Hx, nrow=m+1, byrow=TRUE)
dummy <- rep(1,n)
Hy <- .Call(cpermdist2, as.integer(n),
as.integer(tsy), as.integer(dummy),
as.integer(yscores$scores),
as.logical(FALSE))
Hy <- matrix(Hy, nrow=n+1, byrow=TRUE)
L <- sum(choose(m, 1:m)*choose(n, 1:m))
D <- c()
for (i in 1:min(m,n)) {
xmean <- which(Hx[i+1,] > 0) - 1
ymean <- which(Hy[i+1,] > 0) - 1
xm <- length(xmean)
ym <- length(ymean)
diff <- as.vector(outer(((xmean + xscores$add*i)/xscores$fact)/i,
((ymean + yscores$add*i)/yscores$fact)/i, "-"))
count <- as.vector(outer(Hx[i+1, xmean+1], Hy[i+1, ymean+1], "*"))
od <- order(diff)
count <- count[od]
diff <- diff[od]
du <- duplicated(diff)
if (any(is.na(du))) print("NA in du")
if (length(du) < length(count)) print("du < count")
for (k in length(count):1) {
if (du[k]) count[k-1] <- count[k-1] + count[k]
}
diff <- unique(diff)
count <- count[!du]
old <- diff %in% D[,1]
Dold <- D[,1] %in% diff
if (any(Dold))
D[Dold,2] <- D[Dold,2] + count[old]
if (any(!old))
D <- rbind(D, cbind(diff[!old], count[!old]))
D <- D[order(D[,1]),]
}
od <- order(D[,1])
Dcount <- cumsum(D[od,2])
Dsort <- D[od,1]
cint <- switch(alternative,
"two.sided" = {
qu <- floor((1-alpha/2)*L)
qu <- which(abs(Dcount - qu) == min(abs(Dcount - qu)))
ql <- ceiling(alpha/2*L)
ql <- which(abs(Dcount - ql) == min(abs(Dcount - ql)))
c(Dsort[ql], Dsort[qu])
}, "greater" = {
qu <- floor((1-alpha)*L)
qu <- which(abs(Dcount - qu) == min(abs(Dcount - qu)))
c(-Inf, Dsort[qu])
}, "less" = {
ql <- ceiling(alpha*L)
ql <- which(abs(Dcount - ql) == min(abs(Dcount - ql)))
c(Dsort[ql], Inf)
})
attr(cint, "conf.level") <- conf.level
}
}
names(STATISTIC) <- "T"
if (exact) {
names(MIDP) <- "point prob"
RVAL <- list(statistic = STATISTIC,
p.value = PVAL,
pointprob = MIDP,
null.value = c(mu = mu),
alternative = alternative,
method = METHOD,
data.name = DNAME)
if(conf.int)
RVAL$conf.int <- cint
} else {
RVAL <- list(statistic = STATISTIC,
p.value = PVAL,
null.value = c(mu = mu),
alternative = alternative,
method = METHOD,
data.name = DNAME)
}
class(RVAL) <- "htest"
return(RVAL)
}
perm.test.formula <-
function(formula, data, subset, na.action, ...)
{
if(missing(formula)
|| (length(formula) != 3)
|| (length(attr(terms(formula[-2]), "term.labels")) != 1)
|| (length(attr(terms(formula[-3]), "term.labels")) != 1))
stop("formula missing or incorrect")
if(missing(na.action))
na.action <- getOption("na.action")
m <- match.call(expand.dots = FALSE)
if(is.matrix(eval(m$data, parent.frame())))
m$data <- as.data.frame(data)
m[[1]] <- as.name("model.frame")
m$... <- NULL
mf <- eval(m, parent.frame())
DNAME <- paste(names(mf), collapse = " by ")
names(mf) <- NULL
response <- attr(attr(mf, "terms"), "response")
g <- factor(mf[[-response]])
if(nlevels(g) != 2)
stop("grouping factor must have exactly 2 levels")
DATA <- split(mf[[response]], g)
names(DATA) <- c("x", "y")
y <- do.call("perm.test", c(DATA, list(...)))
y$data.name <- DNAME
y
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.