Nothing
predict.basisfd <- function(object, newdata=NULL, Lfdobj=0,
returnMatrix=FALSE, ...){
##
## 1. newdata?
##
if(is.null(newdata)){
type <- object$type
if(length(type) != 1)
stop('length(object$type) must be 1; is ',
length(type) )
newdata <- {
if(type=='bspline') {
unique(knots(object, interior=FALSE))
} else object$rangeval
}
}
##
## 2. eval.basis
##
eval.basis(newdata, object, Lfdobj, returnMatrix)
}
eval.basis <- function(evalarg, basisobj, Lfdobj=0, returnMatrix=FALSE) {
# Computes the basis matrix evaluated at arguments in EVALARG associated
# with basis.fd object BASISOBJ. The basis matrix contains the values
# at argument value vector EVALARG of applying the nonhomogeneous
# linear differential operator LFD to the basis functions. By default
# LFD is 0, and the basis functions are simply evaluated at argument
# values in EVALARG.
#
# If LFD is a functional data object with m + 1 functions c_1, ... c_{m+1},
# then it is assumed to define the order m HOMOGENEOUS linear differential
# operator
#
# Lx(t) = c_1(t) + c_2(t)x(t) + c_3(t)Dx(t) + ... +
# c_{m+1}D^{m-1}x(t) + D^m x(t).
#
# If the basis type is either polygonal or constant, LFD is ignored.
#
# Arguments:
# EVALARG ... Either a vector of values at which all functions are evaluated,
# or a matrix of values, with number of columns corresponding to
# number of functions in argument FD. If the number of evaluation
# values varies from curve to curve, pad out unwanted positions in
# each column with NA. The number of rows is equal to the maximum
# of number of evaluation points.
# BASISOBJ ... A basis object
# LFDOBJ ... A linear differential operator object
# applied to the basis functions before they are to be evaluated.
# RETURNMATRIX ... If False, a matrix in sparse storage model can be returned
# from a call to function BsplineS. See this function for
# enabling this option.
# Note that the first two arguments may be interchanged.
# Last modified 24 December 2012
##
## 1. check
##
# Exchange the first two arguments if the first is a BASIS.FD object
# and the second numeric
if (is.numeric(basisobj) && inherits(evalarg, "basisfd")) {
temp <- basisobj
basisobj <- evalarg
evalarg <- temp
}
# check EVALARG
# if (!(is.numeric(evalarg))){# stop("Argument EVALARG is not numeric.")
# turn off warnings in checking if argvals can be converted to numeric.
if(is.numeric(evalarg)){
if(!is.vector(evalarg))stop("Argument 'evalarg' is not a vector.")
Evalarg <- evalarg
} else {
op <- options(warn=-1)
Evalarg <- as.numeric(evalarg)
options(op)
nNA <- sum(is.na(Evalarg))
if(nNA>0)
stop('as.numeric(evalarg) contains ', nNA,
' NA', c('', 's')[1+(nNA>1)],
'; class(evalarg) = ', class(evalarg))
# if(!is.vector(Evalarg))
# stop("Argument EVALARG is not a vector.")
}
# check basisobj
if (!(inherits(basisobj, "basisfd"))) stop(
"Second argument is not a basis object.")
# check LFDOBJ
Lfdobj <- int2Lfd(Lfdobj)
##
## 2. set up
##
# determine the highest order of derivative NDERIV required
nderiv <- Lfdobj$nderiv
# get weight coefficient functions
bwtlist <- Lfdobj$bwtlist
##
## 3. Do
##
# get highest order of basis matrix
basismat <- getbasismatrix(evalarg, basisobj, nderiv, returnMatrix)
# Compute the weighted combination of derivatives is
# evaluated here if the operator is not defined by an
# integer and the order of derivative is positive.
if (nderiv > 0) {
nbasis <- dim(basismat)[2]
oneb <- matrix(1,1,nbasis)
nonintwrd <- FALSE
for (j in 1:nderiv) {
bfd <- bwtlist[[j]]
bbasis <- bfd$basis
if (bbasis$type != "constant" || bfd$coefs != 0) nonintwrd <- TRUE
}
if (nonintwrd) {
for (j in 1:nderiv) {
bfd <- bwtlist[[j]]
if (!all(c(bfd$coefs) == 0.0)) {
wjarray <- eval.fd(evalarg, bfd, 0, returnMatrix)
Dbasismat <- getbasismatrix(evalarg, basisobj, j-1,
returnMatrix)
basismat <- basismat + (wjarray %*% oneb)*Dbasismat
}
}
}
}
if((!returnMatrix) && (length(dim(basismat)) == 2)){
return(as.matrix(basismat))
} else {
return(basismat)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.