Nothing
fRegress.stderr <- function (y, y2cMap, SigmaE, returnMatrix = FALSE, ...)
{
# FREGRESS.STDERR computes standard error estimates for regression
# coefficient functions estimated by function FREGRESS.
#
# Arguments:
#
# Y ... a list object produced by function FREGRESS with class name
# 'fRegress".
# This is indicated by Y in the arguments since R syntax
# requires all of tghe fRegress family of functions to
# use this notation.
# Y2CMAP ... the matrix mapping from the vector of observed values
# to the coefficients for the dependent variable.
# This is output by function SMOOTH_BASIS. If this is
# supplied, confidence limits are computed, otherwise not.
# SIGMAE ... Estimate of the covariances among the residuals. This
# can only be estimated after a preliminary analysis
# with FREGRESS.
# RETURNMATRIX ... If False, a matrix in sparse storage model can be returned
# from a call to function BsplineS. See this function for
# enabling this option.
#
# Returns:
#
# BETASTDERRLIST ... a list object, each list containing a fdPar object
# for the standard error of a regression function.
# BVAR ... the symmetric matrix of sampling variances and
# covariances for the matrix of regression coefficients
# for the regression functions. These are stored
# column-wise in defining BVARIANCE.
# C2BMAP ... the matrix mapping from response variable coefficients
# to coefficients for regression coefficients
# Last modified 16 December 2020
# retrieve objects from y
yfdobj <- y$yfdobj
xfdlist <- y$xfdlist
betalist <- y$betalist
betaestlist <- y$betaestlist
yhatfdobj <- y$yhatfdobj
Cmat <- y$Cmat
Dmat <- y$Dmat
Cmatinv <- y$Cmatinv
wt <- y$wt
df <- y$df
betastderrlist <- y$betastderrlist
YhatStderr <- y$YhatStderr
Bvar <- y$Bvar
c2bMap <- y$c2bMap
# get number of independent variables
p <- length(xfdlist)
# compute number of coefficients
ncoef <- 0
for (j in 1:p) {
betaParfdj <- betalist[[j]]
ncoefj <- betaParfdj$fd$basis$nbasis
ncoef <- ncoef + ncoefj
}
if (inherits(yfdobj, "fdPar") || inherits(yfdobj, "fd")) {
# ----------------------------------------------------------------
# yfdobj is functional data object
# ----------------------------------------------------------------
# As of 2020, if yfdobj is an fdPar object, it is converted to an fd object.
# The added structure of the fdPar class is not used in any of the fRegress codes.
# The older versions of fda package used yfdPar as the name for the first member.
if (inherits(yfdobj, "fdPar")) yfdobj <- yfdobj$fd
# get number of replications and basis information for YFDPAR
N <- dim(yfdobj$coefs)[2]
ybasisobj <- yfdobj$basis
rangeval <- ybasisobj$rangeval
ynbasis <- ybasisobj$nbasis
ninteg <- max(501, 10 * ynbasis + 1)
tinteg <- seq(rangeval[1], rangeval[2], len = ninteg)
deltat <- tinteg[2] - tinteg[1]
ybasismat <- eval.basis(tinteg, ybasisobj, 0, returnMatrix)
# compute BASISPRODMAT
basisprodmat <- matrix(0, ncoef, ynbasis * N)
mj2 <- 0
for (j in 1:p) {
betafdParj <- betalist[[j]]
betabasisj <- betafdParj$fd$basis
ncoefj <- betabasisj$nbasis
bbasismatj <- eval.basis(tinteg, betabasisj, 0, returnMatrix)
xfdj <- xfdlist[[j]]
tempj <- eval.fd(tinteg, xfdj, 0, returnMatrix)
mj1 <- mj2 + 1
mj2 <- mj2 + ncoefj
indexj <- mj1:mj2
mk2 <- 0
for (k in 1:ynbasis) {
mk1 <- mk2 + 1
mk2 <- mk2 + N
indexk <- mk1:mk2
tempk <- bbasismatj * ybasismat[, k]
basisprodmat[indexj, indexk] <- deltat * crossprod(tempk,
tempj)
}
}
# check dimensions of Y2CMAP
y2cdim <- dim(y2cMap)
if (y2cdim[1] != ynbasis || y2cdim[2] != dim(SigmaE)[1])
stop("Dimensions of Y2CMAP not correct.")
# compute variances of regression coefficient function values
Varc <- y2cMap %*% SigmaE %*% t(y2cMap)
CVar <- kronecker(Varc, diag(rep(1, N)))
C2BMap <- Cmatinv %*% basisprodmat
Bvar <- C2BMap %*% CVar %*% t(C2BMap)
nplot <- max(51, 10 * ynbasis + 1)
tplot <- seq(rangeval[1], rangeval[2], len = nplot)
betastderrlist <- vector("list", p)
PsiMatlist <- vector("list", p)
mj2 <- 0
for (j in 1:p) {
betafdParj <- betalist[[j]]
betabasisj <- betafdParj$fd$basis
ncoefj <- betabasisj$nbasis
mj1 <- mj2 + 1
mj2 <- mj2 + ncoefj
indexj <- mj1:mj2
bbasismat <- eval.basis(tplot, betabasisj, 0, returnMatrix)
PsiMatlist <- bbasismat
bvarj <- Bvar[indexj, indexj]
bstderrj <- sqrt(diag(bbasismat %*% bvarj %*% t(bbasismat)))
bstderrfdj <- smooth.basis(tplot, bstderrj, betabasisj)$fd
betastderrlist[[j]] <- bstderrfdj
}
# compute estimated variance-covariance matrix over plotting grid
# of fitted values
YhatStderr <- matrix(0, nplot, N)
B2YhatList <- vector("list", p)
for (iplot in 1:nplot) {
YhatVari <- matrix(0, N, N)
tval <- tplot[iplot]
for (j in 1:p) {
Zmat <- eval.fd(tval, xfdlist[[j]])
betabasisj <- betalist[[j]]$fd$basis
PsiMatj <- eval.basis(tval, betabasisj)
B2YhatMapij <- t(Zmat) %*% PsiMatj
B2YhatList[[j]] <- B2YhatMapij
}
m2j <- 0
for (j in 1:p) {
m1j <- m2j + 1
m2j <- m2j + betalist[[j]]$fd$basis$nbasis
B2YhatMapij <- B2YhatList[[j]]
m2k <- 0
for (k in 1:p) {
m1k <- m2k + 1
m2k <- m2k + betalist[[k]]$fd$basis$nbasis
B2YhatMapik <- B2YhatList[[k]]
YhatVari <- YhatVari +
B2YhatMapij %*% Bvar[m1j:m2j,m1k:m2k] %*% t(B2YhatMapik)
}
}
YhatStderr[iplot, ] <- matrix(sqrt(diag(YhatVari)), 1, N)
}
}
else {
# ----------------------------------------------------------------
# yfdobj is scalar or multivariate
# ----------------------------------------------------------------
ymat <- as.matrix(yfdobj)
N <- dim(ymat)[1]
Zmat <- NULL
for (j in 1:p) {
xfdj <- xfdlist[[j]]
if (inherits(xfdj, "fd")) {
xcoef <- xfdj$coefs
xbasis <- xfdj$basis
betafdParj <- betalist[[j]]
bbasis <- betafdParj$fd$basis
Jpsithetaj <- inprod(xbasis, bbasis)
Zmat <- cbind(Zmat, t(xcoef) %*% Jpsithetaj)
}
else if (inherits(xfdj, "numeric")) {
Zmatj <- xfdj
Zmat <- cbind(Zmat, Zmatj)
}
}
# compute linear mapping c2bMap takinging coefficients for
# response into coefficients for regression functions
c2bMap <- Cmatinv %*% t(Zmat)
y2bmap <- c2bMap
Bvar <- y2bmap %*% as.matrix(SigmaE) %*% t(y2bmap)
betastderrlist <- vector("list", p)
mj2 <- 0
for (j in 1:p) {
betafdParj <- betalist[[j]]
betabasisj <- betafdParj$fd$basis
ncoefj <- betabasisj$nbasis
mj1 <- mj2 + 1
mj2 <- mj2 + ncoefj
indexj <- mj1:mj2
bvarj <- Bvar[indexj, indexj]
xfdj <- xfdlist[[j]]
if (inherits(xfdj, "fd")) {
betarng <- betabasisj$rangeval
ninteg <- max(c(501, 10 * ncoefj + 1))
tinteg <- seq(betarng[1], betarng[2], len = ninteg)
bbasismat <- eval.basis(tinteg, betabasisj, 0,
returnMatrix)
bstderrj <- sqrt(diag(bbasismat %*% bvarj %*%
t(bbasismat)))
bstderrfdj <- smooth.basis(tinteg, bstderrj,
betabasisj)$fd
}
else {
bsterrj <- sqrt(diag(bvarj))
onebasis <- create.constant.basis(betabasisj$rangeval)
bstderrfdj <- fd(t(bstderrj), onebasis)
}
betastderrlist[[j]] <- bstderrfdj
}
# compute estimated variance-covariance matrix for fitted values
B2YhatList <- vector("list", p)
YhatVari <- matrix(0, N, N)
for (j in 1:p) {
betabasisj <- betalist[[j]]$fd$basis
Xfdj <- xfdlist[[j]]
B2YhatMapij <- inprod(Xfdj, betabasisj)
B2YhatList[[j]] <- B2YhatMapij
}
m2j <- 0
for (j in 1:p) {
m1j <- m2j + 1
m2j <- m2j + betalist[[j]]$fd$basis$nbasis
B2YhatMapij <- B2YhatList[[j]]
m2k <- 0
for (k in 1:p) {
m1k <- m2k + 1
m2k <- m2k + betalist[[k]]$fd$basis$nbasis
B2YhatMapik <- B2YhatList[[k]]
YhatVari <- YhatVari + B2YhatMapij %*% Bvar[m1j:m2j,
m1k:m2k] %*% t(B2YhatMapik)
}
}
YhatStderr <- matrix(sqrt(diag(YhatVari)), N, 1)
}
# return output object of class fRegress
fRegressList <- list(yfdobj = y$yfdobj, xfdlist = y$xfdlist,
betalist = y$betalist, betaestlist = y$betaestlist,
yhatfdobj = y$yhatfdobj, Cmat = y$Cmat, Dmat = y$Dmat,
Cmatinv = y$Cmatinv, wt = y$wt,
df = y$df, y2cMap = y2cMap, SigmaE = SigmaE,
betastderrlist = betastderrlist, YhatStderr = YhatStderr,
Bvar = Bvar, c2bMap = c2bMap)
class(fRegressList) = "fRegress"
return(fRegressList)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.