Nothing
linmod = function(xfdobj, yfdobj, betaList, wtvec=NULL) {
# LINMOD Fits an unrestricted or full functional linear model of the form
# y(t) = \alpha(t) + \int x(s) \beta(s,t) ds + \epsilon(t),
# where
# \beta(s,t) = \phi'(s) B \psi(t)
#
# Arguments:
# XFD a functional data object for the independent variable
# YFD a functional data object for the dependent variable
# BETACELL a List array of length 2 containing a functional
# parameter object for \alpha and a bifdPar object for
# \beta as a function of s and t, respectively.
# WTVEC a vector of weights
# Returns: a list object linmodList with fields
# BETA0ESTFD a functional parameter object for \alpha
# BETA1ESTBIFD a bivariate functional parameter object for \beta
# YHATFDOBJ a functional data object for the approximation to y
# Last modified 11 June 2010
# check xfdobj and yfdobj
if (!is.fd(xfdobj)) {
stop("XFD is not a functional data object.")
}
if (!is.fd(yfdobj)) {
stop("YFD is not a functional data object.")
}
ybasis = yfdobj$basis
ynbasis = ybasis$nbasis
ranget = ybasis$rangeval
xbasis = xfdobj$basis
ranges = xbasis$rangeval
nfine = max(c(201,10*ynbasis+1))
tfine = seq(ranget[1],ranget[2],len=nfine)
# get dimensions of data
coefy = yfdobj$coef
coefx = xfdobj$coef
coefdx = dim(coefx)
coefdy = dim(coefy)
ncurves = coefdx[2]
if (coefdy[2] != ncurves) {
stop ("Numbers of observations in first two arguments do not match.")
}
# set up or check weight vector
if (!is.null(wtvec)) wtvec = wtcheck(ncurves, wtvec)
# get basis parameter objects
if (!inherits(betaList, "list")) stop("betaList is not a list object.")
if (length(betaList) != 2) stop("betaList not of length 2.")
alphafdPar = betaList[[1]]
betabifdPar = betaList[[2]]
if (!inherits(alphafdPar, "fdPar")) {
stop("BETACELL[[1]] is not a fdPar object.")
}
if (!inherits(betabifdPar, "bifdPar")) {
stop("BETACELL[[2]] is not a bifdPar object.")
}
# get Lfd objects
alphaLfd = alphafdPar$Lfd
betasLfd = betabifdPar$Lfds
betatLfd = betabifdPar$Lfdt
# get smoothing parameters
alphalambda = alphafdPar$lambda
betaslambda = betabifdPar$lambdas
betatlambda = betabifdPar$lambdat
# get basis objects
alphafd = alphafdPar$fd
alphabasis = alphafd$basis
alpharange = alphabasis$rangeval
if (alpharange[1] != ranget[1] || alpharange[2] != ranget[2]) {
stop("Range of ALPHAFD coefficient and YFD not compatible.")
}
betabifd = betabifdPar$bifd
betasbasis = betabifd$sbasis
betasrange = betasbasis$rangeval
if (betasrange[1] != ranges[1] || betasrange[2] != ranges[2]) {
stop("Range of BETASFD coefficient and XFD not compatible.")
}
betatbasis = betabifd$tbasis
betatrange = betatbasis$rangeval
if (betatrange[1] != ranget[1] || betatrange[2] != ranget[2]) {
stop("Range of BETATFD coefficient and YFD not compatible.")
}
# get numbers of basis functions
alphanbasis = alphabasis$nbasis
betasnbasis = betasbasis$nbasis
betatnbasis = betatbasis$nbasis
# get inner products of basis functions and data functions
Finprod = inprod(ybasis, alphabasis)
Ginprod = inprod(ybasis, betatbasis)
Hinprod = inprod(xbasis, betasbasis)
ycoef = yfdobj$coef
xcoef = xfdobj$coef
Fmat = t(ycoef) %*% Finprod
Gmat = t(ycoef) %*% Ginprod
Hmat = t(xcoef) %*% Hinprod
if (is.null(wtvec)) {
HHCP = t(Hmat) %*% Hmat
HGCP = t(Hmat) %*% Gmat
H1CP = as.matrix(apply(Hmat,2,sum))
F1CP = as.matrix(apply(Fmat,2,sum))
} else {
HHCP = t(Hmat) %*% (outer(wtvec,rep(betasnbasis))*Hmat)
HGCP = t(Hmat) %*% (outer(wtvec,rep(betatnbasis))*Gmat)
H1CP = t(Hmat) %*% wtvec
F1CP = t(Fmat) %*% wtvec
}
# get inner products of basis functions
alphattmat = inprod(alphabasis, alphabasis)
betalttmat = inprod(betatbasis, alphabasis)
betassmat = inprod(betasbasis, betasbasis)
betattmat = inprod(betatbasis, betatbasis)
# get penalty matrices
if (alphalambda > 0) {
alphapenmat = eval.penalty(alphabasis, alphaLfd)
} else {
alphapenmat = NULL
}
if (betaslambda > 0) {
betaspenmat = eval.penalty(betasbasis, betasLfd)
} else {
betaspenmat = NULL
}
if (betatlambda > 0) {
betatpenmat = eval.penalty(betatbasis, betatLfd)
} else {
betatpenmat = NULL
}
# set up coefficient matrix and right side for stationary equations
betan = betasnbasis*betatnbasis
ncoef = alphanbasis + betan
Cmat = matrix(0,ncoef,ncoef)
Dmat = matrix(0,ncoef,1)
# rows for alpha
ind1 = 1:alphanbasis
ind2 = ind1
Cmat[ind1,ind2] = ncurves*alphattmat
if (alphalambda > 0) {
Cmat[ind1,ind2] = Cmat[ind1,ind2] + alphalambda*alphapenmat
}
ind2 = alphanbasis + (1:betan)
Cmat[ind1,ind2] = t(kronecker(H1CP,betalttmat))
Dmat[ind1] = F1CP
# rows for beta
ind1 = alphanbasis + (1:betan)
ind2 = 1:alphanbasis
Cmat[ind1,ind2] = t(Cmat[ind2,ind1])
ind2 = ind1
Cmat[ind1,ind2] = kronecker(HHCP,betattmat)
if (betaslambda > 0) {
Cmat[ind1,ind2] = Cmat[ind1,ind2] +
betaslambda*kronecker(betaspenmat,betattmat)
}
if (betatlambda > 0) {
Cmat[ind1,ind2] = Cmat[ind1,ind2] +
betatlambda*kronecker(betassmat,betatpenmat)
}
Dmat[ind1] = matrix(t(HGCP),betan,1)
# solve the equations
coefvec = symsolve(Cmat, Dmat)
# set up the coefficient function estimates
# functional structure for the alpha function
ind1 = 1:alphanbasis
alphacoef = coefvec[ind1]
alphafdnames = yfdobj$fdnames
alphafdnames[[3]] = "Intercept"
alphafd = fd(alphacoef, alphabasis, alphafdnames)
# bi-functional structure for the beta function
ind1 = alphanbasis + (1:betan)
betacoef = matrix(coefvec[ind1],betatnbasis,betasnbasis)
betafdnames = xfdobj$fdnames
betafdnames[[3]] = "Reg. Coefficient"
betafd = bifd(t(betacoef), betasbasis, betatbasis, betafdnames)
# functional data structure for the yhat functions
xbetacoef = betacoef %*% t(Hmat)
xbetafd = fd(xbetacoef, betatbasis)
yhatmat = eval.fd(tfine, alphafd) %*% matrix(1,1,ncurves) +
eval.fd(tfine, xbetafd)
yhatfd = smooth.basis(tfine, yhatmat, ybasis)$fd
linmodList = list(beta0estfd=alphafd, beta1estbifd=betafd, yhatfdobj=yhatfd)
return(linmodList)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.